Question
Mathematics Question on Continuity and differentiability
If y=(tanx)sinx, then dxdy is equal to
A
secx+cosx
B
secx+logtanx
C
(tanx)sinx
D
None of these
Answer
None of these
Explanation
Solution
We have, y=(tanx)sinx Taking log on both sides, we get logy=sinxlog(tanx) Differentiating w.r.t. x, we get y1dxdy=tanxsinx⋅sec2x+cosxlog(tanx) =(tanx)sinx[secx+cosx(logtanx)]