Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If y=(tanx)sinxy=\left(tanx\right)^{sinx}, then dydx\frac{dy}{dx} is equal to

A

secx+cosxsec\, x + cos\, x

B

secx+logtanxsec\, x +log\, tan \,x

C

(tanx)sinx(tan\,x)sin^x

D

None of these

Answer

None of these

Explanation

Solution

We have, y=(tanx)sinxy = (tanx)^{sinx} Taking log on both sides, we get logy=sinxlog(tanx)logy = sinx \,log(tanx) Differentiating ww.rr.tt. xx, we get 1ydydx=sinxtanxsec2x+cosxlog(tanx)\frac{1}{y} \frac{dy}{dx}=\frac{sin\,x}{tan\,x}\cdot sec^{2}x+cosx\,log\left(tanx\right) =(tanx)sinx[secx+cosx(logtanx)]=\left(tanx\right)^{sinx}\left[sec\,x+cosx\left(log\,tan\,x\right)\right]