Question
Mathematics Question on Differential equations
If y=(tan−1x)2 then (x2+1)2dx2d2y+2x(x2+1)dxdy=
A
4
B
2
C
1
D
0
Answer
2
Explanation
Solution
We have,
y=(tan−1x)2
On differentiating w.r.t. x, we get
dxdy=1+x22tan−1x
⇒(1+x2)dxdy=2tan−1x
On squaring both sides, we get
(1+x2)2(dxdy)2=4(tan−1x)2
⇒(1+x2)2(dxdy)2=4y[∵y=(tan−1x)2]
Again, differentiating w.r.t.x, we get
(1+x2)2(2dxdy⋅dx2d2y)+2(1+x2)(2x)(dxdy)2=4dxdy
On dividing both sides by 2dxdy,
we get
(1+x2)2(dx2d2y)+2x(1+x2)dxdy=2
So, the correct option is (B): 2