Solveeit Logo

Question

Mathematics Question on limits and derivatives

If y=(sinx)(sinx)(sinx)....,y = \left(\sin x\right)^{\left(\sin x\right)^{\left(\sin x\right)....\infty}} , then dydx=\frac{dy}{dx} =

A

y2sinx(1logy)\frac{y^{2}}{\sin x\left(1-\log y\right)}

B

y2sinx1logy\frac{y^{2} \sin x}{1-\log y}

C

y2cotx1logy\frac{y^{2} \cot x}{1-\log y}

D

y2tanx1logy\frac{y^{2} \tan x}{1-\log y}

Answer

y2cotx1logy\frac{y^{2} \cot x}{1-\log y}

Explanation

Solution

y=(sinx)ylogy=ylogsinxy = \left(\sin x\right)^{y} \Rightarrow \log y = y \log\sin x 1ydydx=dydxlog(sinx)+y1sinx.cosx \Rightarrow \frac{1}{y} \frac{dy}{dx} = \frac{dy}{dx} \log\left(\sin x\right) + y \frac{1}{\sin x} . \cos x dydx(1ylogsinx)=ycotx\Rightarrow \frac{dy}{dx} \left( \frac{1}{y} - \log\sin x\right) = y \cot x dydx=y2cotx1ylogsinx=y2cotx1logy[logy=logsinx]\Rightarrow \frac{dy}{dx} = \frac{y^{2} \cot x }{1 -y \log\sin x} = \frac{y^{2} \cot x}{1-\log y} \left[\because\log y = \log\sin x \right]