Solveeit Logo

Question

Mathematics Question on limits and derivatives

If y=(1+x)(1+x2)....(1+x100),y =\left(1+x\right)\left(1+x^{2}\right) ....\left(1+x^{100}\right), then dxdy\frac{dx}{dy} at x=0x = 0 is

A

100

B

0

C

1

D

5050

Answer

1

Explanation

Solution

y=(1+x)(1+x2)....(1+x100),y =\left(1+x\right)\left(1+x^{2}\right) ....\left(1+x^{100}\right),
Differeptiating w.r.t.,,'y', we get
1=dxdy[(1+x2)(1+x3)...(1+x100)]+(1+x)(2xdxdy)((1+x3)+...(1+x100))+......+[(1+x2)(1+x3)...(1+x99)](100x99dxdy)1 = \frac{dx}{dy} \left[\left(1+x^{2}\right)\left(1+x^{3}\right)...\left(1+x^{100}\right)\right] + \left(1+x\right)\left(2x \frac{dx}{dy}\right)\left(\left(1+x^{3}\right)+...\left(1+x^{100}\right)\right)+......+\left[\left(1+x^{2}\right)\left(1+x^{3}\right)...\left(1+x^{99}\right)\right]\left(100x^{99} \frac{dx}{dy}\right)
Now, dxdy\frac{dx}{dy} at x=0x = 0
1=dxdy[(1+0)(1+0)....(1+0)+(1+0)(0)(1+0).....(1+0)]=dxdy1 = \frac{dx}{dy} \left[\left(1+0\right)\left(1+0\right)....\left(1+0\right)+\left(1+0\right)\left(0\right)\left(1+0\right).....\left(1+0\right) \right] = \frac{dx}{dy}
dxdy=1\therefore \:\:\:\: \frac{dx}{dy} = 1