Question
Mathematics Question on limits and derivatives
If y=(1+x)(1+x2)....(1+x100), then dydx at x=0 is
A
100
B
0
C
1
D
5050
Answer
1
Explanation
Solution
y=(1+x)(1+x2)....(1+x100),
Differeptiating w.r.t.,,'y', we get
1=dydx[(1+x2)(1+x3)...(1+x100)]+(1+x)(2xdydx)((1+x3)+...(1+x100))+......+[(1+x2)(1+x3)...(1+x99)](100x99dydx)
Now, dydx at x=0
1=dydx[(1+0)(1+0)....(1+0)+(1+0)(0)(1+0).....(1+0)]=dydx
∴dydx=1