Solveeit Logo

Question

Question: If \[y=\lambda_{1} e^{ax}+\lambda_{2} xe^{bx}\] where \[\lambda_{1} ,\lambda_{2}\] are arbitrary con...

If y=λ1eax+λ2xebxy=\lambda_{1} e^{ax}+\lambda_{2} xe^{bx} where λ1,λ2\lambda_{1} ,\lambda_{2} are arbitrary constants; is general solution of d2ydx22dydx+y=0\dfrac{d^{2}y}{dx^{2}} -2\dfrac{dy}{dx} +y=0 then the value of ab\dfrac{a}{b} is:

Explanation

Solution

In this question it is given that we have to find the value of ab\dfrac{a}{b}, where y=λ1eax+λ2xebxy=\lambda_{1} e^{ax}+\lambda_{2} xe^{bx} is general solution of d2ydx22dydx+y=0\dfrac{d^{2}y}{dx^{2}} -2\dfrac{dy}{dx} +y=0 and λ1,λ2\lambda_{1} ,\lambda_{2} are arbitrary constants. So to find the solution we have differentiate the given equation two times w.r.t ‘x’ which will lead us to a second order differential equation and after that by comparing with the above differential equation we can able to find the value of ab\dfrac{a}{b}.
Important formulas that we will be using while solution,
ddx(emx)=memx\dfrac{d}{dx} \left( e^{mx}\right) =me^{mx},.......(1)
Where m is any arbitrary constant,
And ddx(uv)=udvdx+vdudx\dfrac{d}{dx} \left( uv\right) =u\dfrac{dv}{dx} +v\dfrac{du}{dx}......(2)
Where u and v are the function of x.

Complete step-by-step answer:
Given equation,
y=λ1eax+λ2xebxy=\lambda_{1} e^{ax}+\lambda_{2} xe^{bx}.............(3)
Differentiating both side of the above equation w.r.t ‘x’ we get,
dydx=ddx(λ1eax+λ2xebx)\dfrac{dy}{dx} =\dfrac{d}{dx} (\lambda_{1} e^{ax}+\lambda_{2} xe^{bx})
dydx=λ1ddx(eax)+λ2ddx(xebx)\Rightarrow \dfrac{dy}{dx} =\lambda_{1} \dfrac{d}{dx} (e^{ax})+\lambda_{2} \dfrac{d}{dx} (xe^{bx})
[ since, λ1,λ2\lambda_{1} ,\lambda_{2} are arbitrary constants that is why we take them outside the derivative]
Now by using the formula (1) and (2) the above differential equation can be written as,
dydx=λ1(aeax)+λ2[xddx(ebx)+ebxddx(x)]\dfrac{dy}{dx} =\lambda_{1} (ae^{ax})+\lambda_{2} \left[ x\dfrac{d}{dx} (e^{bx})+e^{bx}\dfrac{d}{dx} (x)\right] [where considering u=x, v=ebxv=e^{bx}]
dydx=λ1aeax+λ2[x(bebx)+ebx1]\Rightarrow \dfrac{dy}{dx} =\lambda_{1} ae^{ax}+\lambda_{2} \left[ x(be^{bx})+e^{bx}\cdot 1\right]
dydx=λ1aeax+λ2b xebx+λ2ebx\Rightarrow \dfrac{dy}{dx} =\lambda_{1} ae^{ax}+\lambda_{2} b\ xe^{bx}+\lambda_{2} e^{bx}......(4)
Now again differentiating equation (4) w.r.t ‘x’, we get,
d2ydx2=ddx[aλ1eax+bλ2ebx]\dfrac{d^{2}y}{dx^{2}} =\dfrac{d}{dx} [a\lambda_{1} e^{ax}+b\lambda_{2} e^{bx}]
d2ydx2=aλ1ddx(eax)+bλ2ddx(ebx)\Rightarrow \dfrac{d^{2}y}{dx^{2}} =a\lambda_{1} \dfrac{d}{dx} (e^{ax})+b\lambda_{2} \dfrac{d}{dx} (e^{bx})
d2ydx2=aλ1(aeax)+bλ2(bebx)\Rightarrow \dfrac{d^{2}y}{dx^{2}} =a\lambda_{1} \left( ae^{ax}\right) +b\lambda_{2} (be^{bx})
d2ydx2=ddx[λ1aeax+λ2b xebx+λ2ebx]\dfrac{d^{2}y}{dx^{2}} =\dfrac{d}{dx} [\lambda_{1} ae^{ax}+\lambda_{2} b\ xe^{bx}+\lambda_{2} e^{bx}]
d2ydx2=λ1addx(eax)+λ2b ddx(xebx)+λ2ddx(ebx)\Rightarrow \dfrac{d^{2}y}{dx^{2}} =\lambda_{1} a\dfrac{d}{dx} (e^{ax})+\lambda_{2} b\ \dfrac{d}{dx} (xe^{bx})+\lambda_{2} \dfrac{d}{dx} (e^{bx})
d2ydx2=λ1a(aeax)+λ2b [xddx(ebx)+ebxddx(x)]+λ2(bebx)\Rightarrow \dfrac{d^{2}y}{dx^{2}} =\lambda_{1} a(ae^{ax})+\lambda_{2} b\ \left[ x\dfrac{d}{dx} (e^{bx})+e^{bx}\dfrac{d}{dx} (x)\right] +\lambda_{2} (be^{bx}) [using (1) and (2)]
d2ydx2=λ1a(aeax)+λ2b [x(bebx)+ebx1]+λ2(bebx)\Rightarrow \dfrac{d^{2}y}{dx^{2}} =\lambda_{1} a(ae^{ax})+\lambda_{2} b\ \left[ x(be^{bx})+e^{bx}\cdot 1\right] +\lambda_{2} (be^{bx})
d2ydx2=λ1a2eax+λ2b2xebx+2λ2bebx\Rightarrow \dfrac{d^{2}y}{dx^{2}} =\lambda_{1} a^{2}e^{ax}+\lambda_{2} b^{2}xe^{bx}+2\lambda_{2} be^{bx}.........(5)
In the question we have given that the equation (3) is the solution of the differential equation d2ydx22dydx+y=0\dfrac{d^{2}y}{dx^{2}} -2\dfrac{dy}{dx} +y=0.........(6)
Now by putting the values of y, dydxy,\ \dfrac{dy}{dx} and d2ydx2\dfrac{d^{2}y}{dx^{2}} in the equation (6), we get,
d2ydx22dydx+y=0\dfrac{d^{2}y}{dx^{2}} -2\dfrac{dy}{dx} +y=0
(λ1a2eax+λ2b2xebx+2λ2bebx)2(λ1aeax+λ2bxebx+λ2ebx)+(λ1eax+λ2xebx)=0\Rightarrow (\lambda_{1} a^{2}e^{ax}+\lambda_{2} b^{2}xe^{bx}+2\lambda_{2} be^{bx})-2\left( \lambda_{1} ae^{ax}+\lambda_{2} bxe^{bx}+\lambda_{2} e^{bx}\right) +\left( \lambda_{1} e^{ax}+\lambda_{2} xe^{bx}\right) =0
λ1(a22a+1)eax+λ2(b22b+1)xebx+2λ2(b1)ebx=0\Rightarrow \lambda_{1} \left( a^{2}-2a+1\right) e^{ax}+\lambda_{2} \left( b^{2}-2b+1\right) xe^{bx}+2\lambda_{2} \left( b-1\right) e^{bx}=0
Now since as we know that, x22xy+y2=(xy)2x^{2}-2xy+y^{2}=\left( x-y\right)^{2} ,
So by using this identity the above equation can be written as,
λ1(a1)2eax+λ2(b1)2xebx+2λ2(b1)ebx=0\lambda_{1} \left( a-1\right)^{2} e^{ax}+\lambda_{2} \left( b-1\right)^{2} xe^{bx}+2\lambda_{2} \left( b-1\right) e^{bx}=0
Now the from above equation we can say that if all the terms becomes zero then the above equation satisfied, but exponential function cannot be zero and also λ1,λ2\lambda_{1} ,\lambda_{2} cannot be zero because if λ1,λ2\lambda_{1} ,\lambda_{2} becomes zero then the given function becomes zero, i.e, y=0, which is not possible.
Therefore we can write the above equation satisfies if their coefficient becomes zero.
i.e, (a1)2=0\left( a-1\right)^{2} =0, (b1)2=0\left( b-1\right)^{2} =0 and (b1)=0\left( b-1\right) =0
Which implies,
a=1, b=1
Therefore the value of ab=11=1\dfrac{a}{b} =\dfrac{1}{1} =1

Note: While solving this type of question you need to know that while derivative if a constant coefficient is there then by the rule we can take it outside i.e, \dfrac{d}{dx} \left\\{ af\left( x\right) \right\\} =a\dfrac{d}{dx} \left\\{ f\left( x\right) \right\\}
Also in while solving we have used the derivative of x, so for this another formula you need to know which is ddx(xn)=nxn1\dfrac{d}{dx} \left( x^{n}\right) =nx^{n-1}
Since here n=1, that is why derivative of x is 1.