Solveeit Logo

Question

Question: If y is a function of x and log (x + y) – 2xy = 0, then y′(0) is equal to –...

If y is a function of x and log (x + y) – 2xy = 0, then y′(0) is equal to –

A

1

B

–1

C

2

D

0

Answer

1

Explanation

Solution

We have : log (x + y) – 2xy = 0 … (1)

Diff. w.r.t. x, 1x+y\frac { 1 } { x + y } (1+dydx)\left( 1 + \frac{dy}{dx} \right) – 2x dydx\frac{dy}{dx} – 2y = 0

(1x+y2x)\left( \frac { 1 } { x + y } - 2 x \right) dydx\frac{dy}{dx} = 2y – 1x+y\frac{1}{x + y}

dydx\frac{dy}{dx} = 2y(x+y)112x(x+y)\frac{2y(x + y) - 1}{1 - 2x(x + y)}.

When x = 0, from (1), log (y) = 0 ⇒ y = e0 = 1.

 dydx]x=0\left. \ \frac{dy}{dx} \right\rbrack_{x = 0} = 2(1)(0+1)110\frac{2(1)(0 + 1) - 1}{1 - 0} = 11\frac{1}{1} = 1.