Solveeit Logo

Question

Mathematics Question on Differentiability

If y is a function of x and log(x+y)=2xy\log (x + y) = 2xy, then the value of y ' (0) is

A

1

B

-1

C

2

D

0

Answer

1

Explanation

Solution

Given that, log(x+y)=2xy\log (x + y) = 2 xy
\therefore At x = 0, log(y)=0y=1\Rightarrow \log \, (y) = 0 \Rightarrow y = 1
\therefore To find dydx\frac{dy}{dx} at (0, 1)
On differentiating E (i) w.r.t. x, we get
1x+y(1+dydx)=2xdydx+2y.1\frac{1}{ x + y } \bigg(1 + \frac{dy}{dx}\bigg) = 2x \frac{dy}{dx} + 2y . 1
dydx=2y(x+y)112(x+y)x\Rightarrow \frac{dy}{dx} = \frac{ 2 y \, (x + y) - 1}{ 1 - 2 \, (x + y) \, x}.
(dydx)(0,1)=1\Rightarrow \left(\frac{dy}{dx}\right)_{(0, 1)} = 1