Solveeit Logo

Question

Question: If y = f(x) satisfies the differential equation $(1 + x^2)f'(x) = x(1 - f(x))$, $f(0) = \frac{4}{3}$...

If y = f(x) satisfies the differential equation (1+x2)f(x)=x(1f(x))(1 + x^2)f'(x) = x(1 - f(x)), f(0)=43f(0) = \frac{4}{3}, then find the value of f(8)+89f(\sqrt{8}) + \frac{8}{9}

Answer

2

Explanation

Solution

The given differential equation is (1+x2)f(x)=x(1f(x))(1 + x^2)f'(x) = x(1 - f(x)). Rearranging the terms, we get: f(x)1f(x)=x1+x2\frac{f'(x)}{1 - f(x)} = \frac{x}{1 + x^2} Integrating both sides: df1f=x1+x2dx\int \frac{df}{1 - f} = \int \frac{x}{1 + x^2} dx The integral on the left side is ln1f-\ln|1 - f|. For the integral on the right side, let u=1+x2u = 1 + x^2, so du=2xdxdu = 2x dx. The integral becomes 1udu2=12lnu=12ln(1+x2)\int \frac{1}{u} \frac{du}{2} = \frac{1}{2}\ln|u| = \frac{1}{2}\ln(1 + x^2). Equating the results: ln1f=12ln(1+x2)+C1-\ln|1 - f| = \frac{1}{2}\ln(1 + x^2) + C_1 Rearranging and exponentiating: 1f=K(1+x2)1/2|1 - f| = K (1 + x^2)^{-1/2} where K=eC1>0K = e^{-C_1} > 0. Thus, the general solution is f(x)=1A(1+x2)1/2f(x) = 1 - A (1 + x^2)^{-1/2}, where A=±KA = \pm K. Using the initial condition f(0)=43f(0) = \frac{4}{3}: 43=1A(1+02)1/2    43=1A    A=13\frac{4}{3} = 1 - A (1 + 0^2)^{-1/2} \implies \frac{4}{3} = 1 - A \implies A = -\frac{1}{3} So, the particular solution is: f(x)=1(13)(1+x2)1/2=1+131+x2f(x) = 1 - \left(-\frac{1}{3}\right) (1 + x^2)^{-1/2} = 1 + \frac{1}{3\sqrt{1 + x^2}} Now, we find f(8)f(\sqrt{8}): f(8)=1+131+(8)2=1+131+8=1+139=1+19=109f(\sqrt{8}) = 1 + \frac{1}{3\sqrt{1 + (\sqrt{8})^2}} = 1 + \frac{1}{3\sqrt{1 + 8}} = 1 + \frac{1}{3\sqrt{9}} = 1 + \frac{1}{9} = \frac{10}{9} Finally, we calculate f(8)+89f(\sqrt{8}) + \frac{8}{9}: f(8)+89=109+89=189=2f(\sqrt{8}) + \frac{8}{9} = \frac{10}{9} + \frac{8}{9} = \frac{18}{9} = 2