Solveeit Logo

Question

Question: If \(y = \frac{x^{4}}{x^{2} - 3x + 2}\), then for n \> 2 the value of y<sub>n</sub> is equal to...

If y=x4x23x+2y = \frac{x^{4}}{x^{2} - 3x + 2}, then for n > 2 the value of yn is equal to

A

(1)nn![16(x2)n1(x1)n1]( - 1)^{n}n!\lbrack 16(x - 2)^{- n - 1} - (x - 1)^{- n - 1}\rbrack

B

(1)nn![16(x2)n1+(x1)n1]( - 1)^{n}n!\lbrack 16(x - 2)^{- n - 1} + (x - 1)^{- n - 1}\rbrack

C

n![16(x2)n1+(x1)n1]n!\lbrack 16(x - 2)^{- n - 1} + (x - 1)^{- n - 1}\rbrack

D

None of these

Answer

(1)nn![16(x2)n1(x1)n1]( - 1)^{n}n!\lbrack 16(x - 2)^{- n - 1} - (x - 1)^{- n - 1}\rbrack

Explanation

Solution

y=x4x23x+2=x2+3x+7+15x14(x1)(x2)y = \frac{x^{4}}{x^{2} - 3x + 2} = x^{2} + 3x + 7 + \frac{15x - 14}{(x - 1)(x - 2)}

= x2+3x+71(x1)+16(x2)x^{2} + 3x + 7 - \frac{1}{(x - 1)} + \frac{16}{(x - 2)}

yn=Dn(x2)+Dn(3x)+Dn(7)Dn[(x1)1]+16Dn[(x2)1]=(1)nn![(x1)n1+16(x2)n1]y_{n} = D^{n}(x^{2}) + D^{n}(3x) + D^{n}(7) - D^{n}\lbrack(x - 1)^{- 1}\rbrack + 16D^{n}\lbrack(x - 2)^{- 1}\rbrack = ( - 1)^{n}n!\lbrack - (x - 1)^{- n - 1} + 16(x - 2)^{- n - 1}\rbrack

= (1)nn![16(x2)n1(x1)n1]( - 1)^{n}n!\lbrack 16(x - 2)^{- n - 1} - (x - 1)^{- n - 1}\rbrack.