Solveeit Logo

Question

Question: If y = \(\frac{1}{x}\), then the value of \(\frac{dy}{\sqrt{1 + y^{4}}} + \frac{dx}{\sqrt{1 + x^{4}}...

If y = 1x\frac{1}{x}, then the value of dy1+y4+dx1+x4+3\frac{dy}{\sqrt{1 + y^{4}}} + \frac{dx}{\sqrt{1 + x^{4}}} + 3 is equal to-

A

0

B

3

C

4

D

–3

Answer

3

Explanation

Solution

y = 1x\frac{1}{x}dydx\frac{dy}{dx} = 1x2- \frac{1}{x^{2}}

⇒ x2dy + dx = 0

x21+x4dy+dx1+x4=0\frac{x^{2}}{\sqrt{1 + x^{4}}}dy + \frac{dx}{\sqrt{1 + x^{4}}} = 0

dy1x4+1+dx1+x4\frac{dy}{\sqrt{\frac{1}{x^{4}} + 1}} + \frac{dx}{\sqrt{1 + x^{4}}} = 0

dy1+y4+dx1+x4\frac{dy}{\sqrt{1 + y^{4}}} + \frac{dx}{\sqrt{1 + x^{4}}} = 0

dy1+y4+dx1+x4+3\frac{dy}{\sqrt{1 + y^{4}}} + \frac{dx}{\sqrt{1 + x^{4}}} + 3 = 3