Solveeit Logo

Question

Question: If $y = \frac{1}{\sqrt{1-4\sin^2x\cos^2x}}$, then $\frac{dy}{dx} = $...

If y=114sin2xcos2xy = \frac{1}{\sqrt{1-4\sin^2x\cos^2x}}, then dydx=\frac{dy}{dx} =

A

2sec x tan x

B

sin 2x

C

2sec 2x tan 2x

D

cos 2x

Answer

2sec 2x tan 2x

Explanation

Solution

The given function is y=114sin2xcos2xy = \frac{1}{\sqrt{1-4\sin^2x\cos^2x}}.

We can simplify the expression inside the square root using trigonometric identities. We know that 2sinxcosx=sin2x2\sin x\cos x = \sin 2x. So, 4sin2xcos2x=(2sinxcosx)2=(sin2x)2=sin22x4\sin^2x\cos^2x = (2\sin x\cos x)^2 = (\sin 2x)^2 = \sin^2 2x. Substitute this into the expression for yy: y=11sin22xy = \frac{1}{\sqrt{1-\sin^2 2x}} Using the identity 1sin2θ=cos2θ1-\sin^2\theta = \cos^2\theta, we have 1sin22x=cos22x1-\sin^2 2x = \cos^2 2x. So, y=1cos22xy = \frac{1}{\sqrt{\cos^2 2x}}. The square root of cos22x\cos^2 2x is cos2x|\cos 2x|. Thus, y=1cos2x=sec2xy = \frac{1}{|\cos 2x|} = |\sec 2x|.

The question asks for the derivative dydx\frac{dy}{dx}. The derivative of u|u| is sgn(u)dudx\text{sgn}(u) \frac{du}{dx}, where sgn(u)\text{sgn}(u) is the sign function. Here, u=sec2xu = \sec 2x. The derivative of uu with respect to xx is dudx=ddx(sec2x)\frac{du}{dx} = \frac{d}{dx}(\sec 2x). Using the chain rule, ddx(sec(ax))=asec(ax)tan(ax)\frac{d}{dx}(\sec(ax)) = a\sec(ax)\tan(ax). For a=2a=2, we have ddx(sec2x)=2sec2xtan2x\frac{d}{dx}(\sec 2x) = 2\sec 2x\tan 2x. So, dydx=ddxsec2x=sgn(sec2x)(2sec2xtan2x)\frac{dy}{dx} = \frac{d}{dx}|\sec 2x| = \text{sgn}(\sec 2x) \cdot (2\sec 2x\tan 2x).

The options provided are simple expressions without the sign function or piecewise definition. This suggests that the question might be implicitly considering a domain where cos2x>0\cos 2x > 0, which implies sec2x>0\sec 2x > 0. In such a domain, sec2x=sec2x|\sec 2x| = \sec 2x. Assuming cos2x>0\cos 2x > 0, we have y=1cos2x=sec2xy = \frac{1}{\cos 2x} = \sec 2x. Now, we differentiate y=sec2xy = \sec 2x with respect to xx: dydx=ddx(sec2x)\frac{dy}{dx} = \frac{d}{dx}(\sec 2x) Using the chain rule, let u=2xu = 2x. Then dudx=2\frac{du}{dx} = 2. dydx=ddu(secu)dudx=(secutanu)2=sec(2x)tan(2x)2=2sec2xtan2x\frac{dy}{dx} = \frac{d}{du}(\sec u) \cdot \frac{du}{dx} = (\sec u \tan u) \cdot 2 = \sec(2x) \tan(2x) \cdot 2 = 2\sec 2x \tan 2x.

This result matches option C.