Solveeit Logo

Question

Mathematics Question on limits and derivatives

If y=sin(x+9)cosxy=\frac{sin\left(x+9\right)}{cos\,x}, then dydx\frac{dy}{dx} at x=0x = 0 is

A

cos9cos\,9

B

sin9sin\,9

C

00

D

11

Answer

cos9cos\,9

Explanation

Solution

We have, y=sin(x+9)cosx(i)y=\frac{sin\left(x+9\right)}{cos\,x}\quad\ldots\left(i\right) Differentiating (i)\left(i\right) w.r.t. xx, we get dydx=cosxddx(sin(x+9))sin(x+9)ddx(cosx)cos2x\frac{dy}{dx}=\frac{cos\,x \frac{d}{dx}\left(sin\left(x+9\right)\right)-sin\left(x+9\right) \frac{d}{dx}\left(cos\,x\right)}{cos^{2}\,x} =cosx(cos(x+9))×1sin(x+9)(sinx)cos2x=\frac{cos\,x \left(cos\left(x+9\right)\right)\times 1 - sin\left(x+9\right)\left(- sin\, x\right)}{cos^{2}\,x} =cosxcos(x+9)+sinxsin(x+9)cos2x=\frac{cos\, x \,cos\left(x+9\right)+sin\,x \,sin\left(x+9\right)}{cos^{2}\,x} =cos(xx9)cos2x=\frac{cos\left(x-x-9\right)}{cos^{2}\,x} =cos(9)cos2x=cos9cos2x=\frac{cos\left(-9\right)}{cos^{2}\,x}=\frac{cos\,9}{cos^{2}\,x} (cos(x)=cosx)\left(\because cos\left(-x\right)=cosx\right) dydxatx=0\therefore \frac{dy}{dx}\bigg|_{at\,x=0} =cos9(cos0)2=cos91=cos9=\frac{cos\,9}{\left(cos\,0\right)^{2}}=\frac{cos\,9}{1}=cos\,9