Question
Mathematics Question on Continuity and differentiability
If y=secx−tanxsecx+tanx , then dxdy=
A
2secx(secx+tanx)
B
2sec2x(secx+tanx)2
C
2secx(secx+tanx)2
D
secx(secx+tanx)2
Answer
2secx(secx+tanx)2
Explanation
Solution
y=(secx−tanxsecx+tanx)=1−sinx1+sinx
⇒y=1−sin2x(1+sinx)2=cos2x1+sin2x+2sinx
⇒y=sec2x+tan2x+2tanxsecx
⇒y=(secx+tanx)2
Now Differentiating (i) w.r.t. x, we get ... (i)
dxdy=2(secx+tanx).[secxtanx+sec2x]
=2secx(secx+tanx)(secx+tanx)
=2secx(secx+tanx)2