Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If y=secx+tanxsecxtanxy =\frac{\sec x +\tan x}{\sec x - \tan x} , then dydx=\frac{dy}{dx} =

A

2secx(secx+tanx)2 \sec x(\sec x + \tan x)

B

2sec2x(secx+tanx)22 \sec^2 x(\sec x + \tan x)^2

C

2secx(secx+tanx)22 \sec x(\sec x + \tan x)^2

D

secx(secx+tanx)2\sec x(\sec x + \tan x)^2

Answer

2secx(secx+tanx)22 \sec x(\sec x + \tan x)^2

Explanation

Solution

y=(secx+tanxsecxtanx)=1+sinx1sinxy =\left(\frac{\sec x +\tan x}{\sec x - \tan x}\right) = \frac{1+\sin x}{1-\sin x}
y=(1+sinx)21sin2x=1+sin2x+2sinxcos2x\Rightarrow y=\frac{\left(1+\sin x\right)^{2}}{1-\sin^{2} x} =\frac{1+\sin^{2} x +2 \sin x}{\cos^{2} x}
y=sec2x+tan2x+2tanxsecx\Rightarrow y =\sec^{2} x+\tan^{2} x +2 \tan x \sec x
y=(secx+tanx)2\Rightarrow y =\left(\sec x + \tan x\right)^{2}
Now Differentiating (i) w.r.t. x, we get ... (i)
dydx=2(secx+tanx).[secxtanx+sec2x]\frac{dy}{dx} = 2\left( \sec x + \tan x \right). \left[\sec x \tan x + \sec^{2} x \right]
=2secx(secx+tanx)(secx+tanx)=2 \sec x \left(\sec x + \tan x\right)\left(\sec x + \tan x\right)
=2secx(secx+tanx)2= 2 \sec x \left(\sec x + \tan x\right)^{2}