Solveeit Logo

Question

Mathematics Question on Application of derivatives

If y=axb(x1)(x4)y = \frac{ax - b}{\left(x-1\right)\left(x-4\right)} has a turning point P(2,1)P(2, -1), then find the value of aa and bb respectively.

A

1,21,2

B

2,12,1

C

0,10,1

D

1,01,0

Answer

1,01,0

Explanation

Solution

We have, y=axb(x1)(x4)y = \frac{ax - b}{\left(x-1\right)\left(x-4\right)} =axbx25x+4...(i) = \frac{ax-b}{x^{2}-5x+4}\quad...\left(i\right) dydx=(x25x+4)a(axb)(2x5)(x25x+4)2...(ii)\Rightarrow \frac{dy}{dx} = \frac{\left(x^{2}-5x+4\right)a-\left(ax-b\right)\left(2x-5\right)}{\left(x^{2}-5x+4\right)^{2}}\quad ...\left(ii\right) (dydx)P(2,1)=(410+4)a(2ab)(45)(410+42)\Rightarrow \left(\frac{dy}{dx}\right)_{P\left(2, - 1\right)} = \frac{\left(4-10+4\right)a-\left(2a-b\right)\left(4-5\right)}{\left(4-10+4^{2}\right)} =b4 = -\frac{b}{4} Since PP is a turning point of the curve (i)\left(i\right). Therefore, (dydx)P=0\Rightarrow \left(\frac{dy}{dx}\right)_{P} = 0 b4=0\Rightarrow -\frac{b}{4} = 0 b=0...(iii)\Rightarrow b = 0\quad ...\left(iii\right) Since P(2,1)P\left(2, -1\right) lies on y=axb(x1)(x4)y =\frac{ax - b}{\left(x-1\right)\left(x-4\right)}. Therefore, 1=2ab(21)(24)-1 = \frac{2a-b}{\left(2-1\right)\left(2-4\right)} 1=2ab2\Rightarrow -1 = \frac{2a-b}{-2} 2ab2...(iv)\Rightarrow 2a-b-2 \quad ...\left(iv\right) From (iii)\left(iii\right) and (iv)\left(iv\right), we get a=1a = 1, b=0b = 0.