Question
Mathematics Question on Differential Equations
If y=1−4sin2xcos2x1, then dxdy is:
A
2secxtanx
B
sin2x
C
2sec2xtan2x
D
cos2x
Answer
2sec2xtan2x
Explanation
Solution
Begin by rewriting the expression for y in terms of trigonometric identities:
y=1−4sin2xcos2x1.
Using the double angle identity sin2xcos2x=41sin2(2x), rewrite y:
y=1−sin2(2x)1.
The term 1−sin2(2x) simplifies to cos2(2x). Thus:
y=cos(2x)1=sec(2x).
Differentiate y with respect to x:
dxdy=dxd(sec(2x)).
The derivative of sec(2x) is:
dxdy=sec(2x)tan(2x)×2.
Thus:
dxdy=2sec2(2x)tan(2x).
Therefore, the correct answer is:
2sec2xtan2x.