Solveeit Logo

Question

Mathematics Question on Differential Equations

If y=114sin2xcos2x,y = \frac{1}{\sqrt{1 - 4 \sin^2 x \cos^2 x}}, then dydx\frac{dy}{dx} is:

A

2secxtanx2 \sec x \tan x

B

sin2x\sin 2x

C

2sec2xtan2x2 \sec 2x \tan 2x

D

cos2x\cos 2x

Answer

2sec2xtan2x2 \sec 2x \tan 2x

Explanation

Solution

Begin by rewriting the expression for yy in terms of trigonometric identities:

y=114sin2xcos2xy = \frac{1}{\sqrt{1 - 4 \sin^2 x \cos^2 x}}.

Using the double angle identity sin2xcos2x=14sin2(2x)\sin^2 x \cos^2 x = \frac{1}{4} \sin^2(2x), rewrite yy:

y=11sin2(2x)y = \frac{1}{\sqrt{1 - \sin^2(2x)}}.

The term 1sin2(2x)1 - \sin^2(2x) simplifies to cos2(2x)\cos^2(2x). Thus:

y=1cos(2x)=sec(2x)y = \frac{1}{\cos(2x)} = \sec(2x).

Differentiate yy with respect to xx:

dydx=ddx(sec(2x))\frac{dy}{dx} = \frac{d}{dx} (\sec(2x)).

The derivative of sec(2x)\sec(2x) is:

dydx=sec(2x)tan(2x)×2\frac{dy}{dx} = \sec(2x) \tan(2x) \times 2.

Thus:

dydx=2sec2(2x)tan(2x)\frac{dy}{dx} = 2 \sec^2(2x) \tan(2x).

Therefore, the correct answer is:

2sec2xtan2x2 \sec 2x \tan 2x.