Solveeit Logo

Question

Question: If y = f\(\left( \frac{2x - 1}{x^{2} + 1} \right)\) and f ′(x) = sin x<sup>2</sup>, then \(\frac{dy}...

If y = f(2x1x2+1)\left( \frac{2x - 1}{x^{2} + 1} \right) and f ′(x) = sin x2, then dydx\frac{dy}{dx} is equal to

A

cos x2. f ′(x)

B

– cos x2. f (x)

C

2(1+xx2)(x2+1)2.sin(2x1x2+1)2\frac{2(1 + x - x^{2})}{(x^{2} + 1)^{2}}.{\sin\left( \frac{2x - 1}{x^{2} + 1} \right)}^{2}

D

None of these

Answer

2(1+xx2)(x2+1)2.sin(2x1x2+1)2\frac{2(1 + x - x^{2})}{(x^{2} + 1)^{2}}.{\sin\left( \frac{2x - 1}{x^{2} + 1} \right)}^{2}

Explanation

Solution

y = f(2x – 1/ x2 + 1)

dydx\frac{dy}{dx} = f ′(2x1x2+1).(x2+1).2(2x1).2x(x2+1)2\left( \frac{2x - 1}{x^{2} + 1} \right).\frac{(x^{2} + 1).2 - (2x - 1).2x}{(x^{2} + 1)^{2}}

= sin(2x1x2+1)2.2x2+24x2+2x(x2+1)2\left( \frac{2x - 1}{x^{2} + 1} \right)^{2}.\frac{2x^{2} + 2 - 4x^{2} + 2x}{(x^{2} + 1)^{2}}