Solveeit Logo

Question

Mathematics Question on Derivatives of Functions in Parametric Forms

If y=f(x)y = f(x) is twice differentiable function such that at a point P,dydx=4,d2ydx2=3P , \frac{dy}{dx} = 4 , \frac{d^2 y}{dx^2} = - 3 , then (d2xdy2)P=\left( \frac{d^2 x}{dy^2} \right)_P =

A

643\frac{64}{3}

B

163\frac{16}{3}

C

316\frac{3}{16}

D

364\frac{3}{64}

Answer

364\frac{3}{64}

Explanation

Solution

d2xdy2=ddy(dxdy)\because \frac{d^{2} x}{d y^{2}} =\frac{d}{d y}\left(\frac{d x}{d y}\right)
=dxdyddx(1(dydx))=\frac{d x}{d y} \frac{d}{d x}\left(\frac{1}{\left(\frac{d y}{d x}\right)}\right)
=(dxdy)(d2ydx2(dydx)2)=\left(\frac{d x}{d y}\right)\left(\frac{-\frac{d^{2} y}{d x^{2}}}{\left(\frac{d y}{d x}\right)^{2}}\right)
=(d2ydx2)(dydx)3=-\frac{\left(\frac{d^{2} y}{d x^{2}}\right)}{\left(\frac{d y}{d x}\right)^{3}}
(d2xdy2)p=(3)(4)3=364\therefore\left(\frac{d^{2} x}{d y^{2}}\right)_{p}=-\frac{(-3)}{(4)^{3}}=\frac{3}{64}