Question
Mathematics Question on Derivatives of Functions in Parametric Forms
If y=f(x) is twice differentiable function such that at a point P,dxdy=4,dx2d2y=−3 , then (dy2d2x)P=
A
364
B
316
C
163
D
643
Answer
643
Explanation
Solution
∵dy2d2x=dyd(dydx)
=dydxdxd((dxdy)1)
=(dydx)((dxdy)2−dx2d2y)
=−(dxdy)3(dx2d2y)
∴(dy2d2x)p=−(4)3(−3)=643