Solveeit Logo

Question

Question: If y = f (x) be a differentiable function ∀ x ∈ R, then which one of the following is always true:...

If y = f (x) be a differentiable function ∀ x ∈ R, then which one of the following is always true:

A

d2ydx2(dxdy)3\frac{d^{2}y}{dx^{2}} - \left( \frac{dx}{dy} \right)^{3} = 0

B

d2ydx2+(dydx)3d2xdy2\frac{d^{2}y}{dx^{2}} + \left( \frac{dy}{dx} \right)^{3}\frac{d^{2}x}{dy^{2}} = 0

C

d2ydx2(dydx)3\frac{d^{2}y}{dx^{2}} - \left( \frac{dy}{dx} \right)^{3} = 0

D

None of these

Answer

d2ydx2+(dydx)3d2xdy2\frac{d^{2}y}{dx^{2}} + \left( \frac{dy}{dx} \right)^{3}\frac{d^{2}x}{dy^{2}} = 0

Explanation

Solution

dydx=(dxdy)1\frac{dy}{dx} = \left( \frac{dx}{dy} \right)^{- 1}

d2ydx2=(dxdy)2ddx(dxdy)=(dydx)2(d2xdy2)dydx\frac{d^{2}y}{dx^{2}} = - \left( \frac{dx}{dy} \right)^{- 2}\frac{d}{dx}\left( \frac{dx}{dy} \right) = - \left( \frac{dy}{dx} \right)^{2}\left( \frac{d^{2}x}{dy^{2}} \right)\frac{dy}{dx}

=d2ydx2+(dydx)3d2xdy2\frac{d^{2}y}{dx^{2}} + \left( \frac{dy}{dx} \right)^{3}\frac{d^{2}x}{dy^{2}}= 0