Question
Question: If \(y = f\left( {\dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right)\) and \(f'\l...
If y=f((3−2x)(2x+3)) and f′(x)=sin(logx), then dxdy is equal to
A) xlogxsin(logx)
B) ((3−2x)212)[sinlog(3−2x)(2x+3)]
C) xlogxcos(logx)
D) None of these
Solution
In order to find the value of dxdy, differentiate the given function of ‘y’ with respect to ‘x’, and solve it further using the differentiation rule of quotient i.e dxd(vu)=v2vdxdu−udxdv and other methods. If needed, substitute the value of f′(x)=sin(logx).
Formula used:
dxd(vu)=v2vdxdu−udxdv
Complete step by step answer:
We are given one functions y=f((3−2x)(2x+3)) ……….(1)
And, a first order derivative of a function:
f′(x)=sin(logx) …..(2)
On Differentiating equation 1, we get:
dxdy=dxd(f((3−2x)(2x+3)))
Since, from differentiation rules, we know that dxd(f(n)) can be written as dxd(f(n))=f′(n)dxdn.
So, comparing our equation dxdy=dxd(f((3−2x)(2x+3))) with the above equation dxd(f(n))=f′(n)dxdn, we get:
dxd(f((3−2x)(2x+3)))=f′((3−2x)(2x+3))dxd((3−2x)(2x+3)) ……(3)
From the differentiation rule for division, also known as quotient rule, we know that:
dxd(vu)=v2vdxdu−udxdv ……..(4)
Comparing the above value with dxd((3−2x)(2x+3)), we get:
u=2x+3
v=3−2x
Differentiating u w.r.to x, we get:
dxdu=dxd(2x+3)=2dxdx+dxd3
⇒dxdu=2 ….(5)
Differentiating v w.r.to x, we get:
dxdv=dxd(3−2x)=dxd3−2dxdx
⇒dxdv=−2 ….(6)
Comparing the value dxd(vu)=v2vdxdu−udxdv with dxd((3−2x)(2x+3)), we get:
dxd((3−2x)(2x+3))=(3−2x)2(3−2x)dxd(2x+3)−(2x+3)dxd(3−2x)
Substituting the value of dxdv and dxdu from the equation (5) and (6) in the above equation, we get:
⇒dxd((3−2x)(2x+3))=(3−2x)2(3−2x)2−(2x+3)(−2)
Solving it further, we get:
⇒dxd((3−2x)(2x+3))=(3−2x)26−4x+4x+6=(3−2x)212 …..(7)
Since, we are given that f′(x)=sin(logx), substituting the value of x as (3−2x)(2x+3), we get:
f′((3−2x)(2x+3))=sin(log(3−2x)(2x+3)) ………(8)
Substituting the value of equation (7) and equation (8) in the equation (3), we get:
dxd(f((3−2x)(2x+3)))=f′((3−2x)(2x+3))dxd((3−2x)(2x+3))
⇒dxd(f((3−2x)(2x+3)))=(3−2x)212[sin(log(3−2x)(2x+3))]
That is,
⇒dxd(y)=(3−2x)212[sin(log(3−2x)(2x+3))]
Hence, Option (B) is correct.
Note:
We can also further solve the equation for any point by substituting the value of x as 1, 2 or etc, in the above equation and can also expand the logarithmic term if needed using the formula logba=loga−logb.
Since, there are one function and one value inside the function in the value dxd(f(n))=f′(n)dxdn, so we differentiated the whole function then the internal value, according to the rules of differentiation.