Solveeit Logo

Question

Question: If \(y = f\left( {\dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right)\) and \(f'\l...

If y=f((2x+3)(32x))y = f\left( {\dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right) and f(x)=sin(logx)f'\left( x \right) = \sin \left( {\log x} \right), then dydx\dfrac{{dy}}{{dx}} is equal to
A) sin(logx)xlogx\dfrac{{\sin \left( {\log x} \right)}}{{x\log x}}
B) (12(32x)2)[sinlog(2x+3)(32x)]\left( {\dfrac{{12}}{{{{\left( {3 - 2x} \right)}^2}}}} \right)\left[ {\sin \log \dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right]
C) cos(logx)xlogx\dfrac{{\cos \left( {\log x} \right)}}{{x\log x}}
D) None of these

Explanation

Solution

In order to find the value of dydx\dfrac{{dy}}{{dx}}, differentiate the given function of ‘y’ with respect to ‘x’, and solve it further using the differentiation rule of quotient i.e d(uv)dx=vdudxudvdxv2\dfrac{{d\left( {\dfrac{u}{v}} \right)}}{{dx}} = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}} and other methods. If needed, substitute the value of f(x)=sin(logx)f'\left( x \right) = \sin \left( {\log x} \right).

Formula used:
d(uv)dx=vdudxudvdxv2\dfrac{{d\left( {\dfrac{u}{v}} \right)}}{{dx}} = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}

Complete step by step answer:
We are given one functions y=f((2x+3)(32x))y = f\left( {\dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right) ……….(1)
And, a first order derivative of a function:
f(x)=sin(logx)f'\left( x \right) = \sin \left( {\log x} \right) …..(2)
On Differentiating equation 1, we get:
dydx=d(f((2x+3)(32x)))dx\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {f\left( {\dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right)} \right)}}{{dx}}
Since, from differentiation rules, we know that d(f(n))dx\dfrac{{d\left( {f\left( n \right)} \right)}}{{dx}} can be written as d(f(n))dx=f(n)dndx\dfrac{{d\left( {f\left( n \right)} \right)}}{{dx}} = f'\left( n \right)\dfrac{{dn}}{{dx}}.
So, comparing our equation dydx=d(f((2x+3)(32x)))dx\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {f\left( {\dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right)} \right)}}{{dx}} with the above equation d(f(n))dx=f(n)dndx\dfrac{{d\left( {f\left( n \right)} \right)}}{{dx}} = f'\left( n \right)\dfrac{{dn}}{{dx}}, we get:
d(f((2x+3)(32x)))dx=f((2x+3)(32x))d((2x+3)(32x))dx\dfrac{{d\left( {f\left( {\dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right)} \right)}}{{dx}} = f'\left( {\dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right)\dfrac{{d\left( {\dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right)}}{{dx}} ……(3)
From the differentiation rule for division, also known as quotient rule, we know that:
d(uv)dx=vdudxudvdxv2\dfrac{{d\left( {\dfrac{u}{v}} \right)}}{{dx}} = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}} ……..(4)
Comparing the above value with d((2x+3)(32x))dx\dfrac{{d\left( {\dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right)}}{{dx}}, we get:
u=2x+3u = 2x + 3
v=32xv = 3 - 2x
Differentiating u w.r.to x, we get:
dudx=d(2x+3)dx=2dxdx+d3dx\dfrac{{du}}{{dx}} = \dfrac{{d\left( {2x + 3} \right)}}{{dx}} = 2\dfrac{{dx}}{{dx}} + \dfrac{{d3}}{{dx}}
dudx=2\Rightarrow \dfrac{{du}}{{dx}} = 2 ….(5)
Differentiating v w.r.to x, we get:
dvdx=d(32x)dx=d3dx2dxdx\dfrac{{dv}}{{dx}} = \dfrac{{d\left( {3 - 2x} \right)}}{{dx}} = \dfrac{{d3}}{{dx}} - 2\dfrac{{dx}}{{dx}}
dvdx=2\Rightarrow \dfrac{{dv}}{{dx}} = - 2 ….(6)
Comparing the value d(uv)dx=vdudxudvdxv2\dfrac{{d\left( {\dfrac{u}{v}} \right)}}{{dx}} = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}} with d((2x+3)(32x))dx\dfrac{{d\left( {\dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right)}}{{dx}}, we get:
d((2x+3)(32x))dx=(32x)d(2x+3)dx(2x+3)d(32x)dx(32x)2\dfrac{{d\left( {\dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right)}}{{dx}} = \dfrac{{\left( {3 - 2x} \right)\dfrac{{d\left( {2x + 3} \right)}}{{dx}} - \left( {2x + 3} \right)\dfrac{{d\left( {3 - 2x} \right)}}{{dx}}}}{{{{\left( {3 - 2x} \right)}^2}}}
Substituting the value of dvdx\dfrac{{dv}}{{dx}} and dudx\dfrac{{du}}{{dx}} from the equation (5) and (6) in the above equation, we get:
d((2x+3)(32x))dx=(32x)2(2x+3)(2)(32x)2\Rightarrow \dfrac{{d\left( {\dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right)}}{{dx}} = \dfrac{{\left( {3 - 2x} \right)2 - \left( {2x + 3} \right)\left( { - 2} \right)}}{{{{\left( {3 - 2x} \right)}^2}}}
Solving it further, we get:
d((2x+3)(32x))dx=64x+4x+6(32x)2=12(32x)2\Rightarrow \dfrac{{d\left( {\dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right)}}{{dx}} = \dfrac{{6 - 4x + 4x + 6}}{{{{\left( {3 - 2x} \right)}^2}}} = \dfrac{{12}}{{{{\left( {3 - 2x} \right)}^2}}} …..(7)
Since, we are given that f(x)=sin(logx)f'\left( x \right) = \sin \left( {\log x} \right), substituting the value of xx as (2x+3)(32x)\dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}, we get:
f((2x+3)(32x))=sin(log(2x+3)(32x))f'\left( {\dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right) = \sin \left( {\log \dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right) ………(8)
Substituting the value of equation (7) and equation (8) in the equation (3), we get:
d(f((2x+3)(32x)))dx=f((2x+3)(32x))d((2x+3)(32x))dx\dfrac{{d\left( {f\left( {\dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right)} \right)}}{{dx}} = f'\left( {\dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right)\dfrac{{d\left( {\dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right)}}{{dx}}
d(f((2x+3)(32x)))dx=12(32x)2[sin(log(2x+3)(32x))]\Rightarrow \dfrac{{d\left( {f\left( {\dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right)} \right)}}{{dx}} = \dfrac{{12}}{{{{\left( {3 - 2x} \right)}^2}}}\left[ {\sin \left( {\log \dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right)} \right]
That is,
d(y)dx=12(32x)2[sin(log(2x+3)(32x))]\Rightarrow \dfrac{{d\left( y \right)}}{{dx}} = \dfrac{{12}}{{{{\left( {3 - 2x} \right)}^2}}}\left[ {\sin \left( {\log \dfrac{{\left( {2x + 3} \right)}}{{\left( {3 - 2x} \right)}}} \right)} \right]
Hence, Option (B) is correct.

Note:
We can also further solve the equation for any point by substituting the value of x as 1, 2 or etc, in the above equation and can also expand the logarithmic term if needed using the formula logab=logalogb\log \dfrac{a}{b} = \log a - \log b.
Since, there are one function and one value inside the function in the value d(f(n))dx=f(n)dndx\dfrac{{d\left( {f\left( n \right)} \right)}}{{dx}} = f'\left( n \right)\dfrac{{dn}}{{dx}}, so we differentiated the whole function then the internal value, according to the rules of differentiation.