Solveeit Logo

Question

Question: If \[y = f\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\] and \({f'}(x) = {\sin ^2}x\) , then \...

If y=f((2x1)(x2+1))y = f\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right) and f(x)=sin2x{f'}(x) = {\sin ^2}x , then dydx=\dfrac{{dy}}{{dx}} =
(1) \left\\{ {\dfrac{{\left( {6{x^2} - 2x + 2} \right)}}{{{{({x^2} + 1)}^2}}}} \right\\}\sin \left( {\dfrac{{{{(2x - 1)}^2}}}{{({x^2} + 1)}}} \right)
(2) \left\\{ {\dfrac{{\left( {6{x^2} - 2x + 2} \right)}}{{{{({x^2} + 1)}^2}}}} \right\\}{\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)
(3) \left\\{ {\dfrac{{\left( { - 2{x^2} + 2x + 2} \right)}}{{{{({x^2} + 1)}^2}}}} \right\\}{\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)
(4) \left\\{ {\dfrac{{\left( { - 2{x^2} + 2x + 2} \right)}}{{{{({x^2} + 1)}^2}}}} \right\\}\sin {\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)^2}

Explanation

Solution

If a function that =f(h(x)) = f(h(x)) then we get the dydx=f(h(x))×h(x)\dfrac{{dy}}{{dx}} = f'(h(x)) \times h'(x) , where dydx\dfrac{{dy}}{{dx}} is the differentiation of yy with respect to xx . The derivative of a function of a real variable measures the sensitivity to change of the function value with respect to a change in its argument . Differentiation is a tool of calculus . We differentiate the given function and get the required result .

Complete step by step answer:
From the given data y=f((2x1)(x2+1))y = f\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right) ………………………………….(1)
and f(x)=sin2x{f'}(x) = {\sin ^2}x……………………………….(2)
Differentiate the above equation (1) with respect to xx , we get
dydx=f((2x1)(x2+1)).ddx((2x1)(x2+1))\dfrac{{dy}}{{dx}} = f'\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right).\dfrac{d}{{dx}}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)
From the above equation (2) , we get
f(x)=sin2x{f'}(x) = {\sin ^2}x
f(x)=sin2((2x1)(x2+1))\Rightarrow f'(x) = {\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)
Now we combining above two equation and we get
dydx=sin2((2x1)(x2+1))ddx((2x1)(x2+1))\Rightarrow \dfrac{{dy}}{{dx}} = {\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\dfrac{d}{{dx}}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)
Now we differentiate the remaining function by using the formula of ddx(uv)\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) , we get
dydx=sin2((2x1)(x2+1))ddx(2x1)×(x2+1)(2x1)×ddx(x2+1)(x2+1)2\Rightarrow \dfrac{{dy}}{{dx}} = {\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\dfrac{{\dfrac{d}{{dx}}(2x - 1) \times ({x^2} + 1) - (2x - 1) \times \dfrac{d}{{dx}}({x^2} + 1)}}{{{{({x^2} + 1)}^2}}}
We find the differentiation ddx(2x1)\dfrac{d}{{dx}}(2x - 1)
=2= 2
And the differentiation of ddx(x2+1)\dfrac{d}{{dx}}({x^2} + 1)
=2x= 2x
We use this in the above equation and calculate
dydx=sin2((2x1)(x2+1))2x2+22x(2x1)(x2+1)2\Rightarrow \dfrac{{dy}}{{dx}} = {\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\dfrac{{2{x^2} + 2 - 2x(2x - 1)}}{{{{({x^2} + 1)}^2}}}
dydx=sin2((2x1)(x2+1))2x2+24x2+2x(x2+1)2\Rightarrow \dfrac{{dy}}{{dx}} = {\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\dfrac{{2{x^2} + 2 - 4{x^2} + 2x}}{{{{({x^2} + 1)}^2}}}
Now we arrange this according to the options and get
dydx=(2x2+2x+2)(x2+1)2sin2((2x1)(x2+1))\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{( - 2{x^2} + 2x + 2)}}{{{{({x^2} + 1)}^2}}}{\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)
Therefore, option (3) is correct.

Note:
In this problem we find the derivative of the composition function and apply the normal derivative rule and then we get the required answer . The differentiation formula of (uv)\left( {\dfrac{u}{v}} \right) is ddx(uv)=v×dudxu×dvdxv2\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v \times \dfrac{{du}}{{dx}} - u \times \dfrac{{dv}}{{dx}}}}{{{v^2}}} . We can find the solution by another way , first we find the dhdx\dfrac{{dh}}{{dx}} and collect the given equations and combine them and get the required answer .
dhdx=ddx((2x1)(x2+1))\dfrac{{dh}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)
dhdx=2x2+22x(2x1)(x2+1)2\Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{{2{x^2} + 2 - 2x(2x - 1)}}{{{{({x^2} + 1)}^2}}}
dhdx=(2x2+2x+2)(x2+1)2\Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{{( - 2{x^2} + 2x + 2)}}{{{{({x^2} + 1)}^2}}}
From given data y=f((2x1)(x2+1))y = f\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)
Differentiating above equation and get
dydx=sin2((2x1)(x2+1))dhdx\Rightarrow \dfrac{{dy}}{{dx}} = {\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\dfrac{{dh}}{{dx}}
Combining above two equations and we get
dydx=(2x2+2x+2)(x2+1)2sin2((2x1)(x2+1))\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{( - 2{x^2} + 2x + 2)}}{{{{({x^2} + 1)}^2}}}{\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)
This is the required answer.