Question
Question: If \[y = f\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\] and \({f'}(x) = {\sin ^2}x\) , then \...
If y=f((x2+1)(2x−1)) and f′(x)=sin2x , then dxdy=
(1) \left\\{ {\dfrac{{\left( {6{x^2} - 2x + 2} \right)}}{{{{({x^2} + 1)}^2}}}} \right\\}\sin \left( {\dfrac{{{{(2x - 1)}^2}}}{{({x^2} + 1)}}} \right)
(2) \left\\{ {\dfrac{{\left( {6{x^2} - 2x + 2} \right)}}{{{{({x^2} + 1)}^2}}}} \right\\}{\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)
(3) \left\\{ {\dfrac{{\left( { - 2{x^2} + 2x + 2} \right)}}{{{{({x^2} + 1)}^2}}}} \right\\}{\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)
(4) \left\\{ {\dfrac{{\left( { - 2{x^2} + 2x + 2} \right)}}{{{{({x^2} + 1)}^2}}}} \right\\}\sin {\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)^2}
Solution
If a function that =f(h(x)) then we get the dxdy=f′(h(x))×h′(x) , where dxdy is the differentiation of y with respect to x . The derivative of a function of a real variable measures the sensitivity to change of the function value with respect to a change in its argument . Differentiation is a tool of calculus . We differentiate the given function and get the required result .
Complete step by step answer:
From the given data y=f((x2+1)(2x−1)) ………………………………….(1)
and f′(x)=sin2x……………………………….(2)
Differentiate the above equation (1) with respect to x , we get
dxdy=f′((x2+1)(2x−1)).dxd((x2+1)(2x−1))
From the above equation (2) , we get
f′(x)=sin2x
⇒f′(x)=sin2((x2+1)(2x−1))
Now we combining above two equation and we get
⇒dxdy=sin2((x2+1)(2x−1))dxd((x2+1)(2x−1))
Now we differentiate the remaining function by using the formula of dxd(vu) , we get
⇒dxdy=sin2((x2+1)(2x−1))(x2+1)2dxd(2x−1)×(x2+1)−(2x−1)×dxd(x2+1)
We find the differentiation dxd(2x−1)
=2
And the differentiation of dxd(x2+1)
=2x
We use this in the above equation and calculate
⇒dxdy=sin2((x2+1)(2x−1))(x2+1)22x2+2−2x(2x−1)
⇒dxdy=sin2((x2+1)(2x−1))(x2+1)22x2+2−4x2+2x
Now we arrange this according to the options and get
⇒dxdy=(x2+1)2(−2x2+2x+2)sin2((x2+1)(2x−1))
Therefore, option (3) is correct.
Note:
In this problem we find the derivative of the composition function and apply the normal derivative rule and then we get the required answer . The differentiation formula of (vu) is dxd(vu)=v2v×dxdu−u×dxdv . We can find the solution by another way , first we find the dxdh and collect the given equations and combine them and get the required answer .
dxdh=dxd((x2+1)(2x−1))
⇒dxdh=(x2+1)22x2+2−2x(2x−1)
⇒dxdh=(x2+1)2(−2x2+2x+2)
From given data y=f((x2+1)(2x−1))
Differentiating above equation and get
⇒dxdy=sin2((x2+1)(2x−1))dxdh
Combining above two equations and we get
⇒dxdy=(x2+1)2(−2x2+2x+2)sin2((x2+1)(2x−1))
This is the required answer.