Solveeit Logo

Question

Question: If y = e<sup>3x</sup> then \(\left( \frac { d ^ { 2 } y } { d x ^ { 2 } } \right)\) \(\left( \frac{...

If y = e3x then (d2ydx2)\left( \frac { d ^ { 2 } y } { d x ^ { 2 } } \right) (d2xdy2)\left( \frac{d^{2}x}{dy^{2}} \right) is

A

1

B

e–3x

C

3e–3x

D

–3e–3x

Answer

–3e–3x

Explanation

Solution

y = e3x then dydx\frac{dy}{dx} = 3e3x

d2ydx\frac{d^{2}y}{dx} = 9.e3x

d2xdy2\frac{d^{2}x}{dy^{2}} = – f´´(x)(f´(x))3\frac{f´´(x)}{(f´(x))^{3}} = – 9e3x(3.e3x)3\frac{9e^{3x}}{(3.e^{3x})^{3}} = –e3x3.e9x\frac{e^{3x}}{3.e^{9x}}

d2ydx2\frac{d^{2}y}{dx^{2}} × d2xdy2\frac{d^{2}x}{dy^{2}} = 9.e3x × (e3x3.e9x)\left( \frac{–e^{3x}}{3.e^{9x}} \right) = – 3e–3x