Question
Question: If y = e<sup>3x</sup> then \(\left( \frac { d ^ { 2 } y } { d x ^ { 2 } } \right)\) \(\left( \frac{...
If y = e3x then (dx2d2y) (dy2d2x) is
A
1
B
e–3x
C
3e–3x
D
–3e–3x
Answer
–3e–3x
Explanation
Solution
y = e3x then dxdy = 3e3x
dxd2y = 9.e3x
dy2d2x = – (f´(x))3f´´(x) = – (3.e3x)39e3x = –3.e9xe3x
⇒ dx2d2y × dy2d2x = 9.e3x × (3.e9x–e3x) = – 3e–3x