Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If y=e12log(1+tan2x)y=e^{\frac{1}{2}log\left(1+tan^{2}\,x\right)}, then dydx\frac{dy}{dx} is equal to

A

12sec2x\frac{1}{2}sec^{2}x

B

sec2xsec^{2}x

C

secxtanxsecx\,tanx

D

e12log(1+tan2x)e^{\frac{1}{2}log\left(1+tan^{2}\,x\right)}

Answer

secxtanxsecx\,tanx

Explanation

Solution

y=e12log(1+tan2x)y=e^{\frac{1}{2}log\left(1+tan^{2}\,x\right)} =(sec2x)1/2=secx=\left(sec^{2}\,x\right)^{1/2}=sec\,x dydx=secxtanx\therefore \frac{dy}{dx}=sec\,x\,tan\,x