Solveeit Logo

Question

Mathematics Question on Differentiability

If y=e2logety = e^{{2}\log_e t} and x=log3(et2)x = \log_3(e^{t^2}), then dydx\frac{dy}{dx} is equal to:

A

14tt\frac{1}{4t\sqrt{t}}

B

loge34tt\frac{\log_e 3}{4t\sqrt{t}}

C

2t2{2t^2}

D

2t2e12loget\frac{2t^2}{e^{\frac{1}{2}\log_e t}}

Answer

loge34tt\frac{\log_e 3}{4t\sqrt{t}}

Explanation

Solution

Step 1: Simplify yy.
The given equation is:
y=e12logety = e^{\frac{1}{2} \log_e t}.
Using logarithmic properties:
y=t12=ty = t^{\frac{1}{2}} = \sqrt{t}.
Step 2: Simplify xx.
The given equation is:
x=log3(et)x = \log_3 (e^t).
Using loga(bc)=clogab\log_a (b^c) = c \cdot \log_a b:
x=tlog3ex = t \cdot \log_3 e.
Step 3: Differentiate yy with respect to tt.
dydt=ddt(t12)=12t12=12t\frac{dy}{dt} = \frac{d}{dt} (t^{\frac{1}{2}}) = \frac{1}{2} t^{-\frac{1}{2}} = \frac{1}{2\sqrt{t}}.
Step 4: Differentiate xx with respect to tt.
dxdt=ddt(tlog3e)=log3e\frac{dx}{dt} = \frac{d}{dt} (t \cdot \log_3 e) = \log_3 e.
Step 5: Compute dydx\frac{dy}{dx}.
dydx=dy/dtdx/dt=12tlog3e\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\frac{1}{2\sqrt{t}}}{\log_3 e}.
Simplify:
dydx=12tlog3e\frac{dy}{dx} = \frac{1}{2\sqrt{t} \cdot \log_3 e}.
Using the property log3e=1loge3\log_3 e = \frac{1}{\log_e 3}, rewrite:
dydx=loge32t\frac{dy}{dx} = \frac{\log_e 3}{2\sqrt{t}}.
Final Answer:
loge32t\frac{\log_e 3}{2\sqrt{t}}