Question
Mathematics Question on Differentiability
If y=e2loget and x=log3(et2), then dxdy is equal to:
A
4tt1
B
4ttloge3
C
2t2
D
e21loget2t2
Answer
4ttloge3
Explanation
Solution
Step 1: Simplify y.
The given equation is:
y=e21loget.
Using logarithmic properties:
y=t21=t.
Step 2: Simplify x.
The given equation is:
x=log3(et).
Using loga(bc)=c⋅logab:
x=t⋅log3e.
Step 3: Differentiate y with respect to t.
dtdy=dtd(t21)=21t−21=2t1.
Step 4: Differentiate x with respect to t.
dtdx=dtd(t⋅log3e)=log3e.
Step 5: Compute dxdy.
dxdy=dx/dtdy/dt=log3e2t1.
Simplify:
dxdy=2t⋅log3e1.
Using the property log3e=loge31, rewrite:
dxdy=2tloge3.
Final Answer:
2tloge3