Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If y=e(1+logex)y = e^{(1 + \log_e \, x)}, then dydx\frac{dy}{dx} is equal to :

A

e

B

1

C

0

D

logex.x\log_e \, x . x

Answer

e

Explanation

Solution

We have, y=e(1+logex)y = e^{(1 + \log_e \, x)} y=e1×elogx\Rightarrow \:\: y = e^1 \times e^{\log x} y=ex[elogex=x]\Rightarrow \:\:\: y = ex \:\:\: [\because \:\: e^{\log} e^x = x] On differentiating, w. r. to x we get dydx=ddx(ex) \frac{dy}{dx} = \frac{d}{dx} (ex) dydx=e\Rightarrow \:\:\: \frac{dy}{dx} = e