Solveeit Logo

Question

Question: If \[y=\dfrac{\sin x}{1+\dfrac{\cos }{1+\dfrac{\sin x}{1+\dfrac{\cos x}{1+\sin x........}}}}\], then...

If y=sinx1+cos1+sinx1+cosx1+sinx........y=\dfrac{\sin x}{1+\dfrac{\cos }{1+\dfrac{\sin x}{1+\dfrac{\cos x}{1+\sin x........}}}}, then find dydx\dfrac{dy}{dx}.

Explanation

Solution

Hint: Simplify the denominator which is an infinite function and differentiate by applying product rule.

Here yy is an infinite function. By observation, we can see the pattern that sinx\sin x and cosx\cos xappear alternatingly and hence, we can write yy as
y=sinx1+cosx1+yy=\dfrac{\sin x}{1+\dfrac{\cos x}{1+y}}
y=sinx1+y+cosx1+y\Rightarrow y=\dfrac{\sin x}{\dfrac{1+y+\cos x}{1+y}}
y=sinx(1+y)1+y+cosx\Rightarrow y=\dfrac{\sin x(1+y)}{1+y+\cos x}
y(1+y+cosx)=sinx(1+y)\Rightarrow y(1+y+\cos x)=\sin x(1+y)
Differentiating both sides with respect toxx, we get,
(1+y+cosx).dydx+y(1+dydxsinx)=(1+y)cosx+sinx(dydx)(1+y+\cos x).\dfrac{dy}{dx}+y(1+\dfrac{dy}{dx}-\sin x)=(1+y)\cos x+\sin x(\dfrac{dy}{dx})
(1+y+cosx).dydx+y+ydydxysinx=(1+y)cosx+sinx(dydx)\Rightarrow (1+y+\cos x).\dfrac{dy}{dx}+y+y\dfrac{dy}{dx}-y\sin x=(1+y)\cos x+\sin x(\dfrac{dy}{dx})
Taking all the terms with dydx\dfrac{dy}{dx}to one side and other terms to the other side, we get,
(1+y+cosx).dydx+ydydxsinx(dydx)=(1+y)cosx+ysinxy\Rightarrow (1+y+\cos x).\dfrac{dy}{dx}+y\dfrac{dy}{dx}-\sin x(\dfrac{dy}{dx})=(1+y)\cos x+y\sin x-y
(1+y+cosxsinx+y).dydx=(1+y)cosx+ysinxy\Rightarrow (1+y+\cos x-\sin x+y).\dfrac{dy}{dx}=(1+y)\cos x+y\sin x-y
dydx=y(cosx+sinx1)+cosx1+2y+cosxsinx\Rightarrow \dfrac{dy}{dx}=\dfrac{y(cosx+\sin x-1)+\cos x}{1+2y+\cos x-\sin x}

Note: Generally students make a mistake of writing sinx1+cos1+sinx1+cosx.....\dfrac{\sin x}{1+\dfrac{\cos }{1+\dfrac{sinx}{1+\cos x.....}}} as sinx1+cosxy\dfrac{\sin x}{\dfrac{1+\cos x}{y}}which is wrong as the repetition starts after the addition of 11 in the denominator i.e. sinx1+cosx1+y\dfrac{\sin x}{\dfrac{1+\cos x}{1+y}}.