Question
Question: If \[y=\dfrac{\sin x}{1+\dfrac{\cos }{1+\dfrac{\sin x}{1+\dfrac{\cos x}{1+\sin x........}}}}\], then...
If y=1+1+1+1+sinx........cosxsinxcossinx, then find dxdy.
Solution
Hint: Simplify the denominator which is an infinite function and differentiate by applying product rule.
Here y is an infinite function. By observation, we can see the pattern that sinx and cosxappear alternatingly and hence, we can write y as
y=1+1+ycosxsinx
⇒y=1+y1+y+cosxsinx
⇒y=1+y+cosxsinx(1+y)
⇒y(1+y+cosx)=sinx(1+y)
Differentiating both sides with respect tox, we get,
(1+y+cosx).dxdy+y(1+dxdy−sinx)=(1+y)cosx+sinx(dxdy)
⇒(1+y+cosx).dxdy+y+ydxdy−ysinx=(1+y)cosx+sinx(dxdy)
Taking all the terms with dxdyto one side and other terms to the other side, we get,
⇒(1+y+cosx).dxdy+ydxdy−sinx(dxdy)=(1+y)cosx+ysinx−y
⇒(1+y+cosx−sinx+y).dxdy=(1+y)cosx+ysinx−y
⇒dxdy=1+2y+cosx−sinxy(cosx+sinx−1)+cosx
Note: Generally students make a mistake of writing 1+1+1+cosx.....sinxcossinx as y1+cosxsinxwhich is wrong as the repetition starts after the addition of 1 in the denominator i.e. 1+y1+cosxsinx.