Solveeit Logo

Question

Question: If \(y = \dfrac{{{{\sin }^{ - 1}}x}}{{\sqrt {1 - {x^2}} }}\), prove that \((1 - {x^2})\dfrac{{dy}}{{...

If y=sin1x1x2y = \dfrac{{{{\sin }^{ - 1}}x}}{{\sqrt {1 - {x^2}} }}, prove that (1x2)dydx=(xy+1)(1 - {x^2})\dfrac{{dy}}{{dx}} = (xy + 1)

Explanation

Solution

In the question they have given the function yy , and we know that if y=uvy = \dfrac{u}{v} where u,vu,v are the functions dependent on xx. If we differentiate the function yy with respect to xx that is dydx\dfrac{{dy}}{{dx}} we get dydx=vduudvv2\dfrac{{dy}}{{dx}} = \dfrac{{vdu - udv}}{{{v^2}}} .By using this formula if we differentiate and simplify the given function we arrive at the correct solution.

Complete step-by-step solution:
In the question, we have given that
y=sin1x1x2y = \dfrac{{{{\sin }^{ - 1}}x}}{{\sqrt {1 - {x^2}} }}
And we have to prove that (1x2)dydx=(xy+1)(1 - {x^2})\dfrac{{dy}}{{dx}} = (xy + 1)
So first of all we need to find the value of dydx\dfrac{{dy}}{{dx}}
And also we know for any function in the form of y=uvy = \dfrac{u}{v} where u,vu,v are the functions dependent on xx and then dydx\dfrac{{dy}}{{dx}} is given by the formula
dydx=vduudvv2\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{vdu - udv}}{{{v^2}}}
So here we have given that u=sin1xu = {\sin ^{ - 1}}x and v=1x2v = \sqrt {1 - {x^2}} as in the question.
So we need to find the value of du,dvdu,dv
So we have u=sin1xu = {\sin ^{ - 1}}x
sinu=x\sin u = x
Now upon differentiating the above functions with respect of xx, we get
cosu(dudx)=1\cos u\left( {\dfrac{{du}}{{dx}}} \right) = 1
(dudx)=1cosu\left( {\dfrac{{du}}{{dx}}} \right) = \dfrac{1}{{\cos u}}
And we also know that
sin2u+cos2u=1{\sin ^2}u + {\cos ^2}u = 1
cosu=1sin2u\cos u = \sqrt {1 - {{\sin }^2}u}
\Rightarrow dudx=11sin2u\dfrac{{du}}{{dx}} = \dfrac{1}{{\sqrt {1 - {{\sin }^2}u} }}
And we have written above, that is from the question
sinu=x\sin u = x
So dudx=11x2\dfrac{{du}}{{dx}} = \dfrac{1}{{\sqrt {1 - {x^2}} }}
\Rightarrow du=11x2dxdu = \dfrac{1}{{\sqrt {1 - {x^2}} }}dx
Now let we assume that
v=1x2v = \sqrt {1 - {x^2}}
\Rightarrow dvdx=121x2.2x\dfrac{{dv}}{{dx}} = \dfrac{1}{{2\sqrt {1 - {x^2}} }}. - 2x dvdx=xdx1x2 \Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{{ - xdx}}{{\sqrt {1 - {x^2}} }}
Now we know by previous discussion that y=uvy = \dfrac{u}{v} where u,vu,v are the function dependent on xx and then dydx\dfrac{{dy}}{{dx}} is given by dydx=vduudvv2\dfrac{{dy}}{{dx}} = \dfrac{{vdu - udv}}{{{v^2}}} (1) - - - (1)
And as we know that v=1x2v = \sqrt {1 - {x^2}} dvdx=xdx1x2 \Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{{ - xdx}}{{\sqrt {1 - {x^2}} }}
\Rightarrow u=sin1xu = {\sin ^{ - 1}}x,dudx=11x2\dfrac{{du}}{{dx}} = \dfrac{1}{{\sqrt {1 - {x^2}} }}
Putting it in equation (1)
\Rightarrow dydx=1x2×11x2sin1x×2x21x2(1x2)2\dfrac{{dy}}{{dx}} = \dfrac{{\sqrt {1 - {x^2}} \times \dfrac{1}{{\sqrt {1 - {x^2}} }} - {{\sin }^{ - 1}}x \times \dfrac{{ - 2x}}{{2\sqrt {1 - {x^2}} }}}}{{{{(\sqrt {1 - {x^2}} )}^2}}}
\Rightarrow dydx=1+xsin1x1x21x2\dfrac{{dy}}{{dx}} = \dfrac{{1 + \dfrac{{x{{\sin }^{ - 1}}x}}{{\sqrt {1 - {x^2}} }}}}{{1 - {x^2}}}
By cross multiplication, we will get
\Rightarrow dydx(1x2)=1+xsin1x1x2\dfrac{{dy}}{{dx}}(1 - {x^2}) = 1 + \dfrac{{x{{\sin }^{ - 1}}x}}{{\sqrt {1 - {x^2}} }}
And we know that y=sin1x1x2y = \dfrac{{{{\sin }^{ - 1}}x}}{{\sqrt {1 - {x^2}} }}
So we get dydx(1x2)=1+xy\dfrac{{dy}}{{dx}}(1 - {x^2}) = 1 + xy
Hence proved

Note: Whenever we have a function given that is yy, first we need to differentiate that function with respect to the corresponding function that is xx, if the answer you get is not what they have asked for then try to differentiate it again to arrive at the solution. For any given function y=g(f(x))y = g(f(x)) its derivative will be given by dydx=g(f(x))f(x)\dfrac{{dy}}{{dx}} = g'(f(x))f'(x).