Solveeit Logo

Question

Question: If \[y = \dfrac{{{e^{2x}}\cos x}}{{x\sin x}}\] , then \[\dfrac{{dy}}{{dx}}\] \[ = \] A) \[\dfrac{{...

If y=e2xcosxxsinxy = \dfrac{{{e^{2x}}\cos x}}{{x\sin x}} , then dydx\dfrac{{dy}}{{dx}} ==
A) e2x[(2x1)cotxxcosec2x]x2\dfrac{{{e^{2x}}\left[ {(2x - 1)\cot x - x\cos e{c^2}x} \right]}}{{{x^2}}}
B) e2x[(2x+1)cotxxcosec2x]x2\dfrac{{{e^{2x}}\left[ {(2x + 1)\cot x - x\cos e{c^2}x} \right]}}{{{x^2}}}
C) e2x[(2x1)cotx+xcosec2x]x2\dfrac{{{e^{2x}}\left[ {(2x - 1)\cot x + x\cos e{c^2}x} \right]}}{{{x^2}}}
D) None of these

Explanation

Solution

In this question, we have to differentiate the given function y=e2xcosxxsinxy = \dfrac{{{e^{2x}}\cos x}}{{x\sin x}} with respect to xx. We will proceed with using the formula for differentiation for division of two numbers. Then we proceed step by step and solve to get the desired result. We will also use the trigonometric identity sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 as required.

Formula used: We will use the formula for differentiation for division of two terms.
I.e. ddx(uv)=vddx(u)uddx(v)v2\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{d}{{dx}}\left( u \right) - u\dfrac{d}{{dx}}\left( v \right)}}{{{v^2}}}
And formula for differentiation for products of two terms.
I.e. ddx(uv)=vddx(u)+uddx(v)\dfrac{d}{{dx}}\left( {uv} \right) = v\dfrac{d}{{dx}}\left( u \right) + u\dfrac{d}{{dx}}\left( v \right)

Complete step by step answer:
Consider the given question,
We are given y=e2xcosxxsinxy = \dfrac{{{e^{2x}}\cos x}}{{x\sin x}}, we have to find the value of dydx\dfrac{{dy}}{{dx}}
I.e. We have to differentiate with respect to xx.
dydx=ddx(e2xcosxxsinx)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{{{e^{2x}}\cos x}}{{x\sin x}}} \right) --------(A)
Now, we use the formula for differentiation for division of two terms
ddx(uv)=vddx(u)uddx(v)v2\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{d}{{dx}}\left( u \right) - u\dfrac{d}{{dx}}\left( v \right)}}{{{v^2}}}
Compare equation (A) with the above formula, then
dydx=xsinxddx(e2xcosx)(e2xcosx)ddx(xsinx)(xsinx)2\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{x\sin x\dfrac{d}{{dx}}\left( {{e^{2x}}\cos x} \right) - ({e^{2x}}\cos x)\dfrac{d}{{dx}}\left( {x\sin x} \right)}}{{{{(x\sin x)}^2}}} …………………(1)
Now we find the value of ddx(e2xcosx)\dfrac{\operatorname{d} }{{dx}}({e^{2x}}\cos x) and ddx(xsinx)\dfrac{\operatorname{d} }{{dx}}(x\sin x).
I.e. ddx(e2xcosx)=e2xddx(cosx)+cosxddx(e2x)\dfrac{\operatorname{d} }{{dx}}({e^{2x}}\cos x) = {e^{2x}}\dfrac{d}{{dx}}(\cos x) + \cos x\dfrac{d}{{dx}}({e^{2x}})
ddx(e2xcosx)=e2x(sinx)+cosx(2e2x)\Rightarrow \dfrac{\operatorname{d} }{{dx}}({e^{2x}}\cos x) = {e^{2x}}( - \sin x) + \cos x(2{e^{2x}})
On simplifying, we have
ddx(e2xcosx)=e2x(2cosxsinx)\Rightarrow \dfrac{\operatorname{d} }{{dx}}({e^{2x}}\cos x) = {e^{2x}}(2\cos x - \sin x) --(2)
And ddx(xsinx)=xddx(sinx)+sinxddx(x)\dfrac{\operatorname{d} }{{dx}}(x\sin x) = x\dfrac{d}{{dx}}(\sin x) + \sin x\dfrac{d}{{dx}}(x)
ddx(xsinx)=xcosx+sinx\Rightarrow \dfrac{\operatorname{d} }{{dx}}(x\sin x) = x\cos x + \sin x --- (3)
Substituting the values from equation (2) and equation (3) in equation (1) we have,
dydx=xsinxddx(e2xcosx)(e2xcosx)ddx(xsinx)(xsinx)2\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{x\sin x\dfrac{d}{{dx}}\left( {{e^{2x}}\cos x} \right) - ({e^{2x}}\cos x)\dfrac{d}{{dx}}\left( {x\sin x} \right)}}{{{{(x\sin x)}^2}}}
dydx=xsinx(e2x(2cosxsinx))(e2xcosx)(sinx+xcosx)(xsinx)2\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{x\sin x\left( {{e^{2x}}(2\cos x - \sin x)} \right) - ({e^{2x}}\cos x)\left( {\sin x + x\cos x} \right)}}{{{{(x\sin x)}^2}}}
On taking common e2x{e^{2x}} and simplifying , we have
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^{2x}}\left\\{ {2x\sin x\cos x - x{{\sin }^2}x - \sin x\cos x - x{{\cos }^2}x} \right\\}}}{{{{(x\sin x)}^2}}}
Again simplifying by taking common sinxcosx\sin x\cos x and xx , we get
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^{2x}}\left\\{ {\sin x\cos x(2x - 1) - x({{\sin }^2}x + {{\cos }^2}x)} \right\\}}}{{{x^2}{{\sin }^2}x}}
We know that sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1thus, we have
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^{2x}}\left\\{ {\sin x\cos x(2x - 1) - x(1)} \right\\}}}{{{x^2}{{\sin }^2}x}}
Dividing the numerator and denominator by sin2x{\sin ^2}xwe have ,
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^{2x}}\left\\{ {\dfrac{{\cos x}}{{\sin x}}(2x - 1) + x(\dfrac{1}{{{{\sin }^2}x}})} \right\\}}}{{{x^2}}}
We know that cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}} and cosec2x=1sin2xcose{c^2}x = \dfrac{1}{{{{\sin }^2}x}}
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^{2x}}\left\\{ {(2x - 1)\cot x + x{{\operatorname{cosec} }^2}x} \right\\}}}{{{x^2}}}
Hence, the option CC is correct.

Note:
1. We must remember the formulas for differentiation. Some common formula for differentiation are :
ddx(sinx)=cosx\dfrac{d}{{dx}}(\sin x) = \cos x
ddx(cosx)=sinx\dfrac{d}{{dx}}(\cos x) = - \sin x
ddx(ex)=ex\dfrac{d}{{dx}}({e^x}) = {e^x}
ddx(x)=1\dfrac{d}{{dx}}(x) = 1
2. While differentiation of function of function, we differentiate each and write as a product. For example, we know that ddx(ex)=ex\dfrac{d}{{dx}}({e^x}) = {e^x} but when we have to differentiate e2x{e^{2x}}, we first differentiate e2x{e^{2x}}with respect to xx and then differentiate the power (i.e. 2x2x) to get the final differentiation .
i.e., ddx(e2x)=e2xddx(2x)=2e2x\dfrac{d}{{dx}}({e^{2x}}) = {e^{2x}}\dfrac{d}{{dx}}(2x) = 2{e^{2x}}.
3. Differentiation of constant terms is always zero. And when a constant term is present as
a product, we keep constant outside of differentiation .