Solveeit Logo

Question

Question: If \( y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \...

If y=ax2(xa)(xb)(xc)+bx(xb)(xc)+c(xc)+1y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{c}{{\left( {x - c} \right)}} + 1 then yy=kx(aax+bbx+ccx)\dfrac{{y'}}{y} = \dfrac{k}{x}\left( {\dfrac{a}{{a - x}} + \dfrac{b}{{b - x}} + \dfrac{c}{{c - x}}} \right) where k=k = ( a,b,ca,b,c are non-real numbers and xa,b,cx \ne a,b,c ).
A. 1- 1
B. 11
C. 22
D. 3- 3

Explanation

Solution

Hint : In order to find the value of kk , initiate by simplifying the equation y=ax2(xa)(xb)(xc)+bx(xb)(xc)+c(xc)+1y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{c}{{\left( {x - c} \right)}} + 1 into its simplest term possible, then differentiate it with respect to xx .Then compare it with the second equation given and get the result.
Formula used:
logab=logalogb\log \dfrac{a}{b} = \log a - \log b
loga.b=loga+logb\log a.b = \log a + \log b
logan=nloga\log {a^n} = n\log a
dlogydx=1ydydx\dfrac{{d\log y}}{{dx}} = \dfrac{1}{y}\dfrac{{dy}}{{dx}}
dlogxdx=1x\dfrac{{d\log x}}{{dx}} = \dfrac{1}{x}

Complete step by step solution:
We are given with an equation y=ax2(xa)(xb)(xc)+bx(xb)(xc)+c(xc)+1y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{c}{{\left( {x - c} \right)}} + 1 .
Starting with simplifying the equation.
Solving the last two operands of the right-hand side, multiplying and dividing 11 by (xc)\left( {x - c} \right) in order to get the same denominator. And by this we get:
y=ax2(xa)(xb)(xc)+bx(xb)(xc)+c(xc)+1(xc)(xc)y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{c}{{\left( {x - c} \right)}} + \dfrac{{1\left( {x - c} \right)}}{{\left( {x - c} \right)}}
Since, the last two have same denominator, so adding them, we get:
y=ax2(xa)(xb)(xc)+bx(xb)(xc)+c+xc(xc) y=ax2(xa)(xb)(xc)+bx(xb)(xc)+x(xc)  \Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{c + x - c}}{{\left( {x - c} \right)}} \\\ \Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{x}{{\left( {x - c} \right)}} \\\
Similarly, multiplying and dividing x(xc)\dfrac{x}{{\left( {x - c} \right)}} by (xb)\left( {x - b} \right) in order to get the same denominator as it’s previous operand, and we get:
y=ax2(xa)(xb)(xc)+bx(xb)(xc)+x(xc)×(xb)(xb)\Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{x}{{\left( {x - c} \right)}} \times \dfrac{{\left( {x - b} \right)}}{{\left( {x - b} \right)}}
Simplifying the last operand, we get:
y=ax2(xa)(xb)(xc)+bx(xb)(xc)+x(xb)(xc)(xb)\Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{x\left( {x - b} \right)}}{{\left( {x - c} \right)\left( {x - b} \right)}}
Opening the parenthesis of the last operand:
y=ax2(xa)(xb)(xc)+bx(xb)(xc)+x2bx(xc)(xb)\Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{{x^2} - bx}}{{\left( {x - c} \right)\left( {x - b} \right)}}
Since, the 2nd and 3rd operand have the same denominator, so adding the numerator terms and we get:
y=ax2(xa)(xb)(xc)+bx+x2bx(xb)(xc) y=ax2(xa)(xb)(xc)+x2(xb)(xc)   \Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx + {x^2} - bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} \\\ \Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{{x^2}}}{{\left( {x - b} \right)\left( {x - c} \right)}} \;
Similarly, multiplying and dividing x2(xb)(xc)\dfrac{{{x^2}}}{{\left( {x - b} \right)\left( {x - c} \right)}} by (xa)\left( {x - a} \right) , in order to have the same denominator as the previous operand:
y=ax2(xa)(xb)(xc)+x2(xb)(xc)×(xa)(xa)\Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{{x^2}}}{{\left( {x - b} \right)\left( {x - c} \right)}} \times \dfrac{{\left( {x - a} \right)}}{{\left( {x - a} \right)}}
Simplifying the second operand:
y=ax2(xa)(xb)(xc)+x2(xa)(xa)(xb)(xc)\Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{{x^2}\left( {x - a} \right)}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}}
Opening the parenthesis of the last operand:
y=ax2(xa)(xb)(xc)+x3ax2(xa)(xb)(xc)\Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{{x^3} - a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}}
Since, the 1st and 2nd operand have the same denominator, so adding the numerator terms and we get:
y=ax2+x3ax2(xa)(xb)(xc) y=x3(xa)(xb)(xc)   \Rightarrow y = \dfrac{{a{x^2} + {x^3} - a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} \\\ \Rightarrow y = \dfrac{{{x^3}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} \;
Therefore, the simplified term of y=ax2(xa)(xb)(xc)+bx(xb)(xc)+c(xc)+1y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{c}{{\left( {x - c} \right)}} + 1 is y=x3(xa)(xb)(xc)y = \dfrac{{{x^3}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} .
Taking log\log both the sides of the obtained equation:
logy=log(x3(xa)(xb)(xc))\log y = \log \left( {\dfrac{{{x^3}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}}} \right)
From the logarithmic rules, we know that logab=logalogb\log \dfrac{a}{b} = \log a - \log b , loga.b=loga+logb\log a.b = \log a + \log b , and logan=nloga\log {a^n} = n\log a , so writing the above equation accordingly, we get:
logy=logx3log((xa)(xb)(xc))\log y = \log {x^3} - \log \left( {\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)} \right)
Again, applying the logarithmic rule in log((xa)(xb)(xc))\log \left( {\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)} \right) and logx3\log {x^3} , we get:

logy=logx3log((xa)(xb)(xc)) logy=3logx(log(xa)+log(xb)+log(xc))   \log y = \log {x^3} - \log \left( {\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)} \right) \\\ \Rightarrow \log y = 3\log x - \left( {\log \left( {x - a} \right) + \log \left( {x - b} \right) + \log \left( {x - c} \right)} \right) \;

Opening the outer parenthesis:
logy=3logxlog(xa)log(xb)log(xc)\log y = 3\log x - \log \left( {x - a} \right) - \log \left( {x - b} \right) - \log \left( {x - c} \right)
Differentiating both sides of the above equation with respect to xx , we get:
dlogydx=3dlogxdxdlog(xa)dxdlog(xb)dxdlog(xc)dx\dfrac{{d\log y}}{{dx}} = 3\dfrac{{d\log x}}{{dx}} - \dfrac{{d\log \left( {x - a} \right)}}{{dx}} - \dfrac{{d\log \left( {x - b} \right)}}{{dx}} - \dfrac{{d\log \left( {x - c} \right)}}{{dx}}
From differentiation formula, we know that: dlogydx=1ydydx\dfrac{{d\log y}}{{dx}} = \dfrac{1}{y}\dfrac{{dy}}{{dx}} and dlogxdx=1x\dfrac{{d\log x}}{{dx}} = \dfrac{1}{x} , since a,b,ca,b,c are constants, so they will create any difference in differentiation, and we get:
dlogydx=3dlogxdxdlog(xa)dxdlog(xb)dxdlog(xc)dx 1ydydx=3x1xa1xb1xc   \Rightarrow \dfrac{{d\log y}}{{dx}} = 3\dfrac{{d\log x}}{{dx}} - \dfrac{{d\log \left( {x - a} \right)}}{{dx}} - \dfrac{{d\log \left( {x - b} \right)}}{{dx}} - \dfrac{{d\log \left( {x - c} \right)}}{{dx}} \\\ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{3}{x} - \dfrac{1}{{x - a}} - \dfrac{1}{{x - b}} - \dfrac{1}{{x - c}} \;
We can expand the term 3x\dfrac{3}{x} as 3x=1x+1x+1x\dfrac{3}{x} = \dfrac{1}{x} + \dfrac{1}{x} + \dfrac{1}{x} , so expanding the term and making a pair with other terms in a parenthesis, and we get:
1ydydx=3x1xa1xb1xc\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{3}{x} - \dfrac{1}{{x - a}} - \dfrac{1}{{x - b}} - \dfrac{1}{{x - c}}
1ydydx=(1x1xa)+(1x1xb)+(1x1xc)\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\dfrac{1}{x} - \dfrac{1}{{x - a}}} \right) + \left( {\dfrac{1}{x} - \dfrac{1}{{x - b}}} \right) + \left( {\dfrac{1}{x} - \dfrac{1}{{x - c}}} \right)
Solving the parenthesis, for each operand, and we can do it so by making the denominator common by multiplying denominator to the alternate numerator and simplifying, like for (1x1xa)=((xa)x(xa)xx(xa))=xaxx(xa)=axa\left( {\dfrac{1}{x} - \dfrac{1}{{x - a}}} \right) = \left( {\dfrac{{\left( {x - a} \right)}}{{x\left( {x - a} \right)}} - \dfrac{x}{{x\left( {x - a} \right)}}} \right) = \dfrac{{x - a - x}}{{x\left( {x - a} \right)}} = \dfrac{{ - a}}{{x - a}} :
Similarly, simplifying for all other operands, we get:
1ydydx=((xa)x(xa)xx(xa))+((xb)x(xb)x(xb))+((xc)x(xc)x(xc))\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\dfrac{{\left( {x - a} \right)}}{{x\left( {x - a} \right)}} - \dfrac{x}{{x\left( {x - a} \right)}}} \right) + \left( {\dfrac{{\left( {x - b} \right)}}{{x\left( {x - b} \right)}} - \dfrac{x}{{\left( {x - b} \right)}}} \right) + \left( {\dfrac{{\left( {x - c} \right)}}{{x\left( {x - c} \right)}} - \dfrac{x}{{\left( {x - c} \right)}}} \right)
Solving the values inside parentheses:
1ydydx=(xaxx(xa))+(xbxx(xb))+(xcxx(xc))\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\dfrac{{x - a - x}}{{x\left( {x - a} \right)}}} \right) + \left( {\dfrac{{x - b - x}}{{x\left( {x - b} \right)}}} \right) + \left( {\dfrac{{x - c - x}}{{x\left( {x - c} \right)}}} \right)
1ydydx=(ax(xa))+(bx(xb))+(cx(xc))\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\dfrac{{ - a}}{{x\left( {x - a} \right)}}} \right) + \left( {\dfrac{{ - b}}{{x\left( {x - b} \right)}}} \right) + \left( {\dfrac{{ - c}}{{x\left( {x - c} \right)}}} \right)
Taking 1 - 1 common from a,(xa)a,\left( {x - a} \right) and others, we get:
1ydydx=(ax(ax))+(bx(bx))+(cx(cx))\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\dfrac{{ - a}}{{ - x\left( {a - x} \right)}}} \right) + \left( {\dfrac{{ - b}}{{ - x\left( {b - x} \right)}}} \right) + \left( {\dfrac{{ - c}}{{ - x\left( {c - x} \right)}}} \right)
1ydydx=(ax(ax))+(bx(bx))+(cx(cx))\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\dfrac{a}{{x\left( {a - x} \right)}}} \right) + \left( {\dfrac{b}{{x\left( {b - x} \right)}}} \right) + \left( {\dfrac{c}{{x\left( {c - x} \right)}}} \right)
Taking 1x\dfrac{1}{x} common outside the parentheses:
1ydydx=1x(a(ax)+b(bx)+c(cx))\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{1}{x}\left( {\dfrac{a}{{\left( {a - x} \right)}} + \dfrac{b}{{\left( {b - x} \right)}} + \dfrac{c}{{\left( {c - x} \right)}}} \right)
Since, we can write dydx=y\dfrac{{dy}}{{dx}} = y' , so writing this, and we get:
yy=1x(aax+bbx+ccx)\Rightarrow \dfrac{{y'}}{y} = \dfrac{1}{x}\left( {\dfrac{a}{{a - x}} + \dfrac{b}{{b - x}} + \dfrac{c}{{c - x}}} \right) ………(1)
The other equation give to us is yy=kx(aax+bbx+ccx)\dfrac{{y'}}{y} = \dfrac{k}{x}\left( {\dfrac{a}{{a - x}} + \dfrac{b}{{b - x}} + \dfrac{c}{{c - x}}} \right) ……(2)
Comparing equation (1) and (2), we get:
k=1k = 1
Which matches with the option 2.
Therefore, If y=ax2(xa)(xb)(xc)+bx(xb)(xc)+c(xc)+1y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{c}{{\left( {x - c} \right)}} + 1 then yy=kx(aax+bbx+ccx)\dfrac{{y'}}{y} = \dfrac{k}{x}\left( {\dfrac{a}{{a - x}} + \dfrac{b}{{b - x}} + \dfrac{c}{{c - x}}} \right) where k=1k = 1 .
Hence, Option B is Correct.
So, the correct answer is “Option B”.

Note : It’s always preferred to solve step by step for ease rather than solving at once, otherwise there is a huge chance of error.
It’s important to take logarithmic function’s both sides, we cannot directly differentiate the equation obtained.