Solveeit Logo

Question

Question: If \[y=\dfrac{a+bx}{c+dx}\], where a, b, c and d are constants and \[\lambda {{y}_{1}}{{y}_{3}}=\mu ...

If y=a+bxc+dxy=\dfrac{a+bx}{c+dx}, where a, b, c and d are constants and λy1y3=μy22\lambda {{y}_{1}}{{y}_{3}}=\mu y_{2}^{2}, then value of μλ2{{\mu }^{{{\lambda }^{2}}}} must be?

Explanation

Solution

Hint: y1=dydx;y2=ddx(dydx)=dy1dx;y3=ddx(d2ydx2)=dy2dx{{y}_{1}}=\dfrac{dy}{dx};{{y}_{2}}=\dfrac{d}{dx}(\dfrac{dy}{dx})=\dfrac{d{{y}_{1}}}{dx}; {{y}_{3}}=\dfrac{d}{dx}(\dfrac{{{d}^{2}}y}{d{{x}^{2}}})=\dfrac{d{{y}_{2}}}{dx}. Apply these concepts to find the values of y1{{y}_{1}} , y2{{y}_{2}} and y3{{y}_{3}} and substitute in given equation. By comparing equation we get λ{\lambda} and μ{\mu} values and then substitute in μλ2{{\mu }^{{{\lambda }^{2}}}} to get required answer.

Complete step-by-step answer:
We are given y=a+bxc+dxy=\dfrac{a+bx}{c+dx} . The given function is of the form y=f(x)g(x)y=\dfrac{f(x)}{g(x)} where , f(x)=a+bxf(x)=a+bx and g(x)=c+dxg(x)=c+dx.
Now , first we will find the value of y1{{y}_{1}}.
To find y1{{y}_{1}}, we will differentiate yy with respect to xx.
On differentiating yy with respect to xx, we get ,
y1=dydx=ddx(f(x)g(x)){{y}_{1}}=\dfrac{dy}{dx}=\dfrac{d}{dx}(\dfrac{f(x)}{g(x)})
For this we will use the quotient rule, which is given as
ddx(f(x)g(x))=g(x).f(x)f(x).g(x)[g(x)]2\dfrac{d}{dx}(\dfrac{f(x)}{g(x)})=\dfrac{g(x).{{f}^{'}}(x)-f(x).{{g}^{'}}(x)}{{{[g(x)]}^{2}}}
Here , f(x)=ddx(a+bx)=b{{f}^{'}}(x)=\dfrac{d}{dx}(a+bx)=b and g(x)=ddx(c+dx)=dg'(x)=\dfrac{d}{dx}(c+dx)=d.
Putting these values in y1{{y}_{1}}, we get,
y1=(c+dx)b(a+bx)d(c+dx)2{{y}_{1}}=\dfrac{(c+dx)b-(a+bx)d}{{{(c+dx)}^{2}}}
=bc+bdxadbdx(c+dx)2=\dfrac{bc+bdx-ad-bdx}{{{(c+dx)}^{2}}}
y1=bcad(c+dx)2\Rightarrow {{y}_{1}}=\dfrac{bc-ad}{{{(c+dx)}^{2}}}
Now, we will find the value of y2{{y}_{2}}.
To find y2{{y}_{2}} , we will differentiate y1{{y}_{1}} with respect to xx.
y1{{y}_{1}} is of the form kp(x)n\dfrac{k}{p{{(x)}^{n}}}, where k=bcadk=bc-ad, p(x)=(c+dx)p(x)=(c+dx)and n=2n=2
On differentiating y1{{y}_{1}} with respect toxx, we get ,
y2=k.np(x)n+1.p(x){{y}_{2}}=\dfrac{-k.n}{p{{(x)}^{n+1}}}.{{p}^{'}}(x)
=2(adbc).d(c+dx)3=\dfrac{2(ad-bc).d}{{{(c+dx)}^{3}}}
Now , we will find the value of y3{{y}_{3}}.
To find y3{{y}_{3}} , we will differentiate y2{{y}_{2}} with respect to xx.
y2{{y}_{2}} is of the form cp(x)m\dfrac{c}{p{{(x)}^{m}}}, where c=2d(adbc)c=2d(ad-bc), p(x)=c+dxp(x)=c+dx and m=3m=3
On differentiating y2{{y}_{2}} with respect to xx, we get ,
So, y3=c.mp(x)m+1.p(x){{y}_{3}}=\dfrac{-c.m}{p{{(x)}^{m+1}}}.{{p}^{'}}(x)
=3(2d(adbc))(c+dx)4.d=\dfrac{-3(2d(ad-bc))}{{{(c+dx)}^{4}}}.d
=6d2(bcad)(c+dx)4=\dfrac{6{{d}^{2}}(bc-ad)}{{{(c+dx)}^{4}}}
Now , in the question, it is given that
λy1y3=μy22\lambda {{y}_{1}}{{y}_{3}}=\mu y_{2}^{2}
Now , we will find the value of y1y3{{y}_{1}}{{y}_{3}}.
To find the value of y1y3{{y}_{1}}{{y}_{3}}, we will multiply the value of y1{{y}_{1}} with the value of y3{{y}_{3}}.
So , y1y3=bcad(c+dx)2.6d2(bcad)(c+dx)4{{y}_{1}}{{y}_{3}}=\dfrac{bc-ad}{{{(c+dx)}^{2}}}.\dfrac{6{{d}^{2}}(bc-ad)}{{{(c+dx)}^{4}}}
=((adbc))(c+dx)2.6d2((adbc))(c+dx)4=\dfrac{(-(ad-bc))}{{{(c+dx)}^{2}}}.\dfrac{6{{d}^{2}}(-(ad-bc))}{{{(c+dx)}^{4}}}
=6d2.(adbc)2(c+dx)6=\dfrac{6{{d}^{2}}.{{(ad-bc)}^{2}}}{{{(c+dx)}^{6}}}
Now , we will find the value of y22y_{2}^{2} .
So, y22=[2d(adbc)(c+dx)3]2y_{2}^{2}={{[\dfrac{2d(ad-bc)}{{{(c+dx)}^{3}}}]}^{2}}
=4d2(adbc)2(c+dx)6=\dfrac{4{{d}^{2}}{{(ad-bc)}^{2}}}{{{(c+dx)}^{6}}}
Now , comparing the values of y1y3{{y}_{1}}{{y}_{3}} and y22y_{2}^{2}, we can conclude if we multiple y1y3{{y}_{1}}{{y}_{3}} by 22 and y22y_{2}^{2} by 33 , they can be equated as 2×y1y3=3y222\times {{y}_{1}}{{y}_{3}}=3y_{2}^{2}
i.e. 2×6d2.(adbc)2(c+dx)6=3×4d2(adbc)2(c+dx)62\times \dfrac{6{{d}^{2}}.{{(ad-bc)}^{2}}}{{{(c+dx)}^{6}}}=3\times \dfrac{4{{d}^{2}}{{(ad-bc)}^{2}}}{{{(c+dx)}^{6}}}
In the question , it is given λy1y3=μy22\lambda {{y}_{1}}{{y}_{3}}=\mu y_{2}^{2}.
Comparing with 2y1y3=3y222{{y}_{1}}{{y}_{3}}=3y_{2}^{2} , we can see λ=2\lambda =2 and μ=3\mu =3
So, μλ2=322=34=3×3×3×3=81{{\mu }^{{{\lambda }^{2}}}}={{3}^{{{2}^{2}}}}={{3}^{4}}=3\times 3\times 3\times 3=81

Note: y1{{y}_{1}} and y2{{y}_{2}} are composite functions , i.e of the form h(x)=a(b(x))h(x)=a(b(x)) and hence, the derivative will be of the form h(x)=a(b(x))×b(x)h'(x)=a'(b(x))\times b'(x).
So, ddx(y1)=knp(x)n+1.p(x)\dfrac{d}{dx}({{y}_{1}})=\dfrac{kn}{p{{(x)}^{n+1}}}.{{p}^{'}}(x)
Here , most of the students make a mistake of not multiplying by p(x){{p}^{'}}(x). Such mistakes should be avoided as students can end up getting a wrong answer.