Solveeit Logo

Question

Question: If \(y = \dfrac{{2{{\left( {x - \sin x} \right)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\) then find \(\dfrac{...

If y=2(xsinx)32xy = \dfrac{{2{{\left( {x - \sin x} \right)}^{\dfrac{3}{2}}}}}{{\sqrt x }} then find dydx\dfrac{{dy}}{{dx}}.
(A) y2[31cosxxsinx1x]\dfrac{y}{2}\left[ {3 \cdot \dfrac{{1 - \cos x}}{{x - \sin x}} - \dfrac{1}{x}} \right]
(B) y2[21cosxxsinx1x]\dfrac{y}{2}\left[ {2 \cdot \dfrac{{1 - \cos x}}{{x - \sin x}} - \dfrac{1}{x}} \right]
(C) y2[1cosxxsinx3x]\dfrac{y}{2}\left[ {\dfrac{{1 - \cos x}}{{x - \sin x}} - \dfrac{3}{x}} \right]
(D) y2[1cosxxsinx2x]\dfrac{y}{2}\left[ {\dfrac{{1 - \cos x}}{{x - \sin x}} - \dfrac{2}{x}} \right]

Explanation

Solution

Hint : In this problem, to find the required derivative first we will take logarithm on both sides of the given function y=f(x)y = f\left( x \right). Then, we will use basic properties of logarithm. Then, we will find the derivative of each term by using a formula of differentiation or chain rule.

Complete step-by-step answer :
In this problem, it is given that y=2(xsinx)32x(1)y = \dfrac{{2{{\left( {x - \sin x} \right)}^{\dfrac{3}{2}}}}}{{\sqrt x }} \cdots \cdots \left( 1 \right). Let us take a logarithm on both sides of the equation (1)\left( 1 \right). Note that x\sqrt x can be written as x12{x^{\dfrac{1}{2}}}. So, we can write
log(y)=log[2(xsinx)32x](2)\log \left( y \right) = \log \left[ {\dfrac{{2{{\left( {x - \sin x} \right)}^{\dfrac{3}{2}}}}}{{\sqrt x }}} \right]\, \cdots \cdots \left( 2 \right)
Let us use the property log(ab)=logalogb\log \left( {\dfrac{a}{b}} \right) = \log a - \log b on the RHS of equation (2)\left( 2 \right). So, we get
logy=log[2(xsinx)32]log(x12)(3)\log y = \log \left[ {2{{\left( {x - \sin x} \right)}^{\dfrac{3}{2}}}} \right] - \log \left( {{x^{\dfrac{1}{2}}}} \right) \cdots \cdots \left( 3 \right)
Let us use the properties log(ab)=loga+logb\log \left( {ab} \right) = \log a + \log b and logab=bloga\log {a^b} = b\log a on RHS of equation (3)\left( 3 \right). So, we get
logy=log2+log(xsinx)3212logx logy=log2+32log(xsinx)12logx(4)  \log y = \log 2 + \log {\left( {x - \sin x} \right)^{\dfrac{3}{2}}} - \dfrac{1}{2}\log x \\\ \Rightarrow \log y = \log 2 + \dfrac{3}{2}\log \left( {x - \sin x} \right) - \dfrac{1}{2}\log x \cdots \cdots \left( 4 \right) \\\
Now we are going to differentiate on both sides of equation (4)\left( 4 \right) with respect to xx. So, we get
1ydydx=0+32(1xsinx)ddx(xsinx)12(1x) 1ydydx=32(1xsinx)(1cosx)12x(5)  \dfrac{1}{y}\dfrac{{dy}}{{dx}} = 0 + \dfrac{3}{2}\left( {\dfrac{1}{{x - \sin x}}} \right)\dfrac{d}{{dx}}\left( {x - \sin x} \right) - \dfrac{1}{2}\left( {\dfrac{1}{x}} \right) \\\ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{3}{2}\left( {\dfrac{1}{{x - \sin x}}} \right)\left( {1 - \cos x} \right) - \dfrac{1}{{2x}} \cdots \cdots \left( 5 \right) \\\
Note that here we used the following formulas of differentiation. Also we used chain rule.
ddx(logx)=1x ddx(xn)=nxn1 ddx(sinx)=cosx  \dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x} \\\ \dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} \\\ \dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x \\\
Also note that log2\log 2 is a constant term. So, its differentiation is zero. Let us simplify the equation (5)\left( 5 \right) to find dydx\dfrac{{dy}}{{dx}}. So, we get
1ydydx=12[3(1cosx)xsinx1x] dydx=y2[31cosxxsinx1x]  \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{1}{2}\left[ {\dfrac{{3\left( {1 - \cos x} \right)}}{{x - \sin x}} - \dfrac{1}{x}} \right] \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{2}\left[ {3 \cdot \dfrac{{1 - \cos x}}{{x - \sin x}} - \dfrac{1}{x}} \right] \\\
So, the correct answer is “Option A”.

Note : In this problem, also we can find dydx\dfrac{{dy}}{{dx}} by using division rule of derivatives which is given by ddx[uv]=vdudxudvdxv2\dfrac{d}{{dx}}\left[ {\dfrac{u}{v}} \right] = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}. If we use this rule then we have to take u=2(xsinx)32u = 2{\left( {x - \sin x} \right)^{\dfrac{3}{2}}} and v=xv = \sqrt x .