Solveeit Logo

Question

Question: If \[y = \dfrac{1}{{{x^2} - {a^2}}}\] then \[{y_n} = \] A. \[\dfrac{{{{\left( { - 1} \right)}^n}n!...

If y=1x2a2y = \dfrac{1}{{{x^2} - {a^2}}} then yn={y_n} =
A. (1)nn!2a[1(xa)n1(x+a)n]\dfrac{{{{\left( { - 1} \right)}^n}n!}}{{2a}}\left[ {\dfrac{1}{{{{\left( {x - a} \right)}^n}}} - \dfrac{1}{{{{\left( {x + a} \right)}^n}}}} \right]
B. (1)nn!2a[1(xa)n+11(x+a)n+1]\dfrac{{{{\left( { - 1} \right)}^n}n!}}{{2a}}\left[ {\dfrac{1}{{{{\left( {x - a} \right)}^{n + 1}}}} - \dfrac{1}{{{{\left( {x + a} \right)}^{^{n + 1}}}}}} \right]
C. (1)nn!2a[1(xa)n+1+1(x+a)n+1]\dfrac{{{{\left( { - 1} \right)}^n}n!}}{{2a}}\left[ {\dfrac{1}{{{{\left( {x - a} \right)}^{n + 1}}}} + \dfrac{1}{{{{\left( {x + a} \right)}^{^{n + 1}}}}}} \right]
D. (1)nn!2a[1(xa)n+1(x+a)n]\dfrac{{{{\left( { - 1} \right)}^n}n!}}{{2a}}\left[ {\dfrac{1}{{{{\left( {x - a} \right)}^n}}} + \dfrac{1}{{{{\left( {x + a} \right)}^n}}}} \right]

Explanation

Solution

In the above given question, we are given an equation y=1x2a2y = \dfrac{1}{{{x^2} - {a^2}}} . We have to find the nth differentiation of yy i.e. we have to find the value of yn{y_n} . In order to approach the solution, we need to find the few consecutive initial derivatives of yy . We can use the method of partial fraction in order to calculate the derivative of the equation y=1x2a2y = \dfrac{1}{{{x^2} - {a^2}}}.

Complete step by step answer:
Given that, the equation y=1x2a2y = \dfrac{1}{{{x^2} - {a^2}}}. We have to find the nth derivative of the above given equation i.e. we have to find yn{y_n}. Since the given equation is of the form y=1x2a2y = \dfrac{1}{{{x^2} - {a^2}}} , hence we can also write it in the form
y=1(xa)(x+a)\Rightarrow y = \dfrac{1}{{\left( {x - a} \right)\left( {x + a} \right)}}
Now we can split the denominator in two parts using the method of partial fraction, such as
y=12a[1(xa)1(x+a)]\Rightarrow y = \dfrac{1}{{2a}}\left[ {\dfrac{1}{{\left( {x - a} \right)}} - \dfrac{1}{{\left( {x + a} \right)}}} \right]

Now differentiating above equation with respect to xx , we get
y=12a[1(xa)2(1)(x+a)]\Rightarrow y' = \dfrac{1}{{2a}}\left[ {\dfrac{{ - 1}}{{{{\left( {x - a} \right)}^2}}} - \dfrac{{\left( { - 1} \right)}}{{\left( {x + a} \right)}}} \right]
Similarly, we have to obtain a few more consecutive derivatives of yy .
Therefore, differentiating again gives us,
y=12a[2!(xa)32!(x+a)3]\Rightarrow y'' = \dfrac{1}{{2a}}\left[ {\dfrac{{2!}}{{{{\left( {x - a} \right)}^3}}} - \dfrac{{2!}}{{{{\left( {x + a} \right)}^3}}}} \right]
Again, differentiating the above equation gives us,
y=12a[3!(xa)43!(x+a)4]\Rightarrow y''' = \dfrac{{ - 1}}{{2a}}\left[ {\dfrac{{3!}}{{{{\left( {x - a} \right)}^4}}} - \dfrac{{3!}}{{{{\left( {x + a} \right)}^4}}}} \right]
And once again, differentiating the above equation gives us,
y(4)=12a[4!(xa)54!(x+a)5]\Rightarrow {y_{^{\left( 4 \right)}}} = \dfrac{1}{{2a}}\left[ {\dfrac{{4!}}{{{{\left( {x - a} \right)}^5}}} - \dfrac{{4!}}{{{{\left( {x + a} \right)}^5}}}} \right]

And so on. Using this pattern, many more further derivatives of yy can be obtained.
Therefore, if we notice the pattern of each differentiation of yy , then we can identify a unique pattern of writing each term. Following the above pattern, we can write the nth derivative of the equation y=1x2a2y = \dfrac{1}{{{x^2} - {a^2}}} as,
yn=(1)n2a[n!(xa)n+1n!(x+a)n+1]\Rightarrow {y_{^n}} = \dfrac{{{{\left( { - 1} \right)}^n}}}{{2a}}\left[ {\dfrac{{n!}}{{{{\left( {x - a} \right)}^{n + 1}}}} - \dfrac{{n!}}{{{{\left( {x + a} \right)}^{n + 1}}}}} \right]
That gives us,
yn=(1)n2an![1(xa)n+11(x+a)n+1]\Rightarrow {y_{^n}} = \dfrac{{{{\left( { - 1} \right)}^n}}}{{2a}}n!\left[ {\dfrac{1}{{{{\left( {x - a} \right)}^{n + 1}}}} - \dfrac{1}{{{{\left( {x + a} \right)}^{n + 1}}}}} \right]
That is the required nth derivative of yy .
Therefore, if y=1x2a2y = \dfrac{1}{{{x^2} - {a^2}}} then yn=(1)n2an![1(xa)n+11(x+a)n+1]{y_{^n}} = \dfrac{{{{\left( { - 1} \right)}^n}}}{{2a}}n!\left[ {\dfrac{1}{{{{\left( {x - a} \right)}^{n + 1}}}} - \dfrac{1}{{{{\left( {x + a} \right)}^{n + 1}}}}} \right] .

Hence, the correct option is B.

Note: There is no general formula to find the nth derivative of a function. Finding the nth derivative means to take a few derivatives (1st, 2nd, 3rd and so on) of that function and look for a pattern. If that exists, then we have a formula for its nth derivative. In order to find the nth derivative, find the first few derivatives to identify the pattern. Apply the usual rules of differentiation to a function. Find each successive derivative to arrive at the nth derivative of the function.