Solveeit Logo

Question

Question: If \[{{y}^{\dfrac{1}{m}}}+{{y}^{\dfrac{-1}{m}}}=2x\] then prove that \[\left( {{x}^{2}}-1 \right){{y...

If y1m+y1m=2x{{y}^{\dfrac{1}{m}}}+{{y}^{\dfrac{-1}{m}}}=2x then prove that (x21)y3+3xy2+(1m2)y1=0\left( {{x}^{2}}-1 \right){{y}_{3}}+3x{{y}_{2}}+\left( 1-{{m}^{2}} \right){{y}_{1}}=0.

Explanation

Solution

Hint: Here y1,y2,y3{{y}_{1}},{{y}_{2}},{{y}_{3}} are the first, second and third derivatives. First convert the given expression into simpler yy and xx terms and then start differentiating.

The given expression is,
y1m+y1m=2x{{y}^{\dfrac{1}{m}}}+{{y}^{\dfrac{-1}{m}}}=2x
This can be re-written as,
y1m+1y1m=2x\Rightarrow {{y}^{\dfrac{1}{m}}}+\dfrac{1}{{{y}^{\dfrac{1}{m}}}}=2x
Now taking the LCM and solving, we get
(y1m)2+1y1m=2x\Rightarrow \dfrac{{{\left( {{y}^{\dfrac{1}{m}}} \right)}^{2}}+1}{{{y}^{\dfrac{1}{m}}}}=2x
On Cross multiplying, we get
(y1m)2+1=2xy1m\Rightarrow {{\left( {{y}^{\dfrac{1}{m}}} \right)}^{2}}+1=2x{{y}^{\dfrac{1}{m}}}
(y1m)22xy1m+1=0\Rightarrow {{\left( {{y}^{\dfrac{1}{m}}} \right)}^{2}}-2x{{y}^{\dfrac{1}{m}}}+1=0
Let y1m=z{{y}^{\dfrac{1}{m}}}=z, then above equation becomes
z22xz+1=0\Rightarrow {{z}^{2}}-2xz+1=0
This is a quadratic equation. The general quadratic equation is ax2+bx+c=0a{{x}^{2}}+bx+c=0, comparing the above equation with this we get
a=1,b=2x,c=1a=1,b=-2x,c=1
The root of this quadratic equation is given by
z=b±b24ac2az=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}
Substituting the corresponding values, we get
z=(2x)±(2x)24(1)(1)2(1)z=\dfrac{-(-2x)\pm \sqrt{{{\left( -2x \right)}^{2}}-4\left( 1 \right)\left( 1 \right)}}{2\left( 1 \right)}
z=2x±4x242\Rightarrow z=\dfrac{2x\pm \sqrt{4{{x}^{2}}-4}}{2}
Taking 44 common under the root and taking out, we get
z=2x±2x212\Rightarrow z=\dfrac{2x\pm 2\sqrt{{{x}^{2}}-1}}{2}
Taking out 22 common, we get
z=x±x21\therefore z=x\pm \sqrt{{{x}^{2}}-1}
Substituting back the value of zz, we get
y1m=z=x±x21{{y}^{\dfrac{1}{m}}}=z=x\pm \sqrt{{{x}^{2}}-1}
y1m=x±x21\Rightarrow {{y}^{\dfrac{1}{m}}}=x\pm \sqrt{{{x}^{2}}-1}
Powering both sides by mm, we get
(y1m)m=(x±x21)m{{\left( {{y}^{\dfrac{1}{m}}} \right)}^{m}}={{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}
y=(x±x21)m.........(i)\therefore y={{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}.........(i)
Now differentiating the above expression with respect to xx, we get
y1=ddx(x±x21)m{{y}_{1}}=\dfrac{d}{dx}{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}
We know, ddx(yn)=nyn1ddx(y)\dfrac{d}{dx}({{y}^{n}})=n{{y}^{n-1}}\dfrac{d}{dx}(y) , so the above equation becomes,
y1=dydx=m(x±x21)m1ddx(x±x21){{y}_{1}}=\dfrac{dy}{dx}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\dfrac{d}{dx}\left( x\pm \sqrt{{{x}^{2}}-1} \right)
Applying the sum rule of differentiation, we get
y1=dydx=m(x±x21)m1[ddx(x)±ddx(x21)]{{y}_{1}}=\dfrac{dy}{dx}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\left[ \dfrac{d}{dx}\left( x \right)\pm \dfrac{d}{dx}\left( \sqrt{{{x}^{2}}-1} \right) \right]
y1=m(x±x21)m1×(1±12×1x21×2x)\Rightarrow {{y}_{1}}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\times \left( 1\pm \dfrac{1}{2}\times \dfrac{1}{\sqrt{{{x}^{2}}-1}}\times 2x \right)
Taking the cancelling the lie terms and taking the LCM, we get
y1=m(x±x21)m1×(x21±xx21)\Rightarrow {{y}_{1}}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\times \left( \dfrac{\sqrt{{{x}^{2}}-1}\pm x}{\sqrt{{{x}^{2}}-1}} \right)
Cross multiplying, we get
y1x21=m(x±x21)m1×(x21±x)\Rightarrow {{y}_{1}}\sqrt{{{x}^{2}}-1}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\times \left( \sqrt{{{x}^{2}}-1}\pm x \right)
y1x21=m(x±x21)m\Rightarrow {{y}_{1}}\sqrt{{{x}^{2}}-1}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}
Now substituting y=(x±x21)my={{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}} from equation (i) in the above equation, we get
y1x21=my\Rightarrow {{y}_{1}}\sqrt{{{x}^{2}}-1}=my
Squaring on both sides, we get
(y1x21)2=(my)2\Rightarrow {{\left( {{y}_{1}}\sqrt{{{x}^{2}}-1} \right)}^{2}}={{\left( my \right)}^{2}}
y12(x21)=m2y2\Rightarrow {{y}_{1}}^{2}\left( {{x}^{2}}-1 \right)={{m}^{2}}{{y}^{2}}
Now differentiating the above equation with respect to x'x' , we get
ddx(y12(x21))=ddx(m2y2)\Rightarrow \dfrac{d}{dx}\left( {{y}_{1}}^{2}\left( {{x}^{2}}-1 \right) \right)=\dfrac{d}{dx}\left( {{m}^{2}}{{y}^{2}} \right)
Now we know, ddx(u.v)=uddxv+vddxu\dfrac{d}{dx}\left( u.v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u, applying this formula, we get
y12ddx(x21)+(x21)ddx(y12)=m2ddx(y2)\Rightarrow {{y}_{1}}^{2}\dfrac{d}{dx}\left( {{x}^{2}}-1 \right)+\left( {{x}^{2}}-1 \right)\dfrac{d}{dx}\left( {{y}_{1}}^{2} \right)={{m}^{2}}\dfrac{d}{dx}\left( {{y}^{2}} \right)
y122x+(x21)2y1ddx(y1)=m22yddx(y)\Rightarrow {{y}_{1}}^{2}2x+\left( {{x}^{2}}-1 \right)2{{y}_{1}}\dfrac{d}{dx}\left( {{y}_{1}} \right)={{m}^{2}}2y\dfrac{d}{dx}(y)
Now we know, y1=dydx,y2=dy1dx{{y}_{1}}=\dfrac{dy}{dx},{{y}_{2}}=\dfrac{d{{y}_{1}}}{dx} , so the above equation becomes,
y122x+(x21)2y1y2=m22yy1\Rightarrow {{y}_{1}}^{2}2x+\left( {{x}^{2}}-1 \right)2{{y}_{1}}{{y}_{2}}={{m}^{2}}2y{{y}_{1}}
2y1(y1x+(x21)y2)=m22yy1\Rightarrow 2{{y}_{1}}\left( {{y}_{1}}x+\left( {{x}^{2}}-1 \right){{y}_{2}} \right)={{m}^{2}}2y{{y}_{1}}
Dividing throughout by 2y1'2{{y}_{1}}' , we get
y1x+(x21)y2=m2y\Rightarrow {{y}_{1}}x+\left( {{x}^{2}}-1 \right){{y}_{2}}={{m}^{2}}y
Now again we will differentiate the above equation with respect to x'x', we get

& \Rightarrow \dfrac{d}{dx}\left( {{y}_{1}}x+\left( {{x}^{2}}-1 \right){{y}_{2}} \right)=\dfrac{d}{dx}\left( {{m}^{2}}y \right) \\\ & \Rightarrow \dfrac{d}{dx}\left( {{y}_{1}}x \right)+\dfrac{d}{dx}\left( \left( {{x}^{2}}-1 \right){{y}_{2}} \right)={{m}^{2}}\dfrac{d}{dx}\left( y \right) \\\ \end{aligned}$$ Now we know, $$\dfrac{d}{dx}\left( u.v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u$$, applying this formula, we get $$\Rightarrow {{y}_{1}}\dfrac{d}{dx}\left( x \right)+x\dfrac{d}{dx}\left( {{y}_{1}} \right)+\left( {{x}^{2}}-1 \right)\dfrac{d}{dx}\left( {{y}_{2}} \right)+{{y}_{2}}\dfrac{d}{dx}\left( {{x}^{2}}-1 \right)={{m}^{2}}\dfrac{d}{dx}\left( y \right)$$ Now we know, ${{y}_{1}}=\dfrac{dy}{dx},{{y}_{2}}=\dfrac{d{{y}_{1}}}{dx}$ , so the above equation becomes, $$\Rightarrow {{y}_{1}}(1)+x{{y}_{2}}+({{x}^{2}}-1){{y}_{3}}+{{y}_{2}}2x={{m}^{2}}{{y}_{1}}$$ $$\Rightarrow {{y}_{1}}+x{{y}_{2}}+({{x}^{2}}-1){{y}_{3}}+{{y}_{2}}2x-{{m}^{2}}{{y}_{1}}=0$$ On regrouping, we get $$\Rightarrow ({{x}^{2}}-1){{y}_{3}}+3x{{y}_{2}}+\left( 1-{{m}^{2}} \right){{y}_{1}}=0$$ Hence proved. Note: In the given question we are asked to prove $$\left( {{x}^{2}}-1 \right){{y}_{3}}+3x{{y}_{2}}+\left( 1-{{m}^{2}} \right){{y}_{1}}=0$$ We should not confuse with the $${{y}_{1}},{{y}_{2}}\,and\,{{y}_{3}}$$. $${{y}_{1}},{{y}_{2}}\, and \,{{y}_{3}}$$ are 1st, 2nd, and 3rd derivative of the given function. If we directly apply differentiation to the given expression, it becomes lengthy and complicated.