Solveeit Logo

Question

Question: If \({y^{\dfrac{1}{m}}} + {y^{\dfrac{{ - 1}}{m}}} = 2x\) , then \(\left( {{x^2} - 1} \right){y_2} + ...

If y1m+y1m=2x{y^{\dfrac{1}{m}}} + {y^{\dfrac{{ - 1}}{m}}} = 2x , then (x21)y2+xy1\left( {{x^2} - 1} \right){y_2} + x{y_1} is equal to
(a)m2y (b)m2y (c)±m2y (d)None of these  \left( a \right){m^2}y \\\ \left( b \right) - {m^2}y \\\ \left( c \right) \pm {m^2}y \\\ \left( d \right){\text{None of these}} \\\

Explanation

Solution

Hint-In this question, we use the concept of first and second derivatives. We have to differentiate the given equation with respect to x and calculate the value of first derivative y1=dydx{y_1} = \dfrac{{dy}}{{dx}} and second derivative y2=d2ydx2{y_2} = \dfrac{{{d^2}y}}{{d{x^2}}} then put the value of derivatives in (x21)y2+xy1\left( {{x^2} - 1} \right){y_2} + x{y_1} .

Complete step-by-step answer:
Given, y1m+y1m=2x{y^{\dfrac{1}{m}}} + {y^{\dfrac{{ - 1}}{m}}} = 2x
We can write as
y1m+1y1m=2x (y1m)2+1=2xy1m (y1m)22xy1m+1=0..............(1)  \Rightarrow {y^{\dfrac{1}{m}}} + \dfrac{1}{{{y^{\dfrac{1}{m}}}}} = 2x \\\ \Rightarrow {\left( {{y^{\dfrac{1}{m}}}} \right)^2} + 1 = 2x{y^{\dfrac{1}{m}}} \\\ \Rightarrow {\left( {{y^{\dfrac{1}{m}}}} \right)^2} - 2x{y^{\dfrac{1}{m}}} + 1 = 0..............\left( 1 \right) \\\
Let t=y1mt = {y^{\dfrac{1}{m}}} and put in (1) equation.
Now, (t)22xt+1=0{\left( t \right)^2} - 2xt + 1 = 0
We can see the quadratic equation in t. So, we calculate the roots of the quadratic equation by using the Sridharacharya formula. According to Sridharacharya formula, if a quadratic equation ax2+bx+c=0a{x^2} + bx + c = 0 so the roots of this quadratic equation is x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} .
t=2x±4x242 t=x±x21  \Rightarrow t = \dfrac{{2x \pm \sqrt {4{x^2} - 4} }}{2} \\\ \Rightarrow t = x \pm \sqrt {{x^2} - 1} \\\
Now, y1m=x±x21{y^{\dfrac{1}{m}}} = x \pm \sqrt {{x^2} - 1}
y=(x±x21)m................(2)\Rightarrow y = {\left( {x \pm \sqrt {{x^2} - 1} } \right)^m}................\left( 2 \right)
Differentiate (2) equation with respect to x.

y1=dydx=ddx((x±x21)m) y1=m(x±x21)m1(1±xx21) y1=m(x±x21)m(1x21)  {y_1} = \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{{\left( {x \pm \sqrt {{x^2} - 1} } \right)}^m}} \right) \\\ \Rightarrow {y_1} = m{\left( {x \pm \sqrt {{x^2} - 1} } \right)^{m - 1}}\left( {1 \pm \dfrac{x}{{\sqrt {{x^2} - 1} }}} \right) \\\ \Rightarrow {y_1} = m{\left( {x \pm \sqrt {{x^2} - 1} } \right)^m}\left( {\dfrac{1}{{\sqrt {{x^2} - 1} }}} \right) \\\

We know, y=(x±x21)my = {\left( {x \pm \sqrt {{x^2} - 1} } \right)^m}
y1=myx21\Rightarrow {y_1} = \dfrac{{my}}{{\sqrt {{x^2} - 1} }}
Now, squaring both sides

(y1)2=m2y2x21 (x21)(y1)2=m2y2...........(3)  \Rightarrow {\left( {{y_1}} \right)^2} = \dfrac{{{m^2}{y^2}}}{{{x^2} - 1}} \\\ \Rightarrow \left( {{x^2} - 1} \right){\left( {{y_1}} \right)^2} = {m^2}{y^2}...........\left( 3 \right) \\\

Differentiate (3) equation with respect to x.
ddx((x21)(y1)2)=d(m2y2)dx\Rightarrow \dfrac{d}{{dx}}\left( {\left( {{x^2} - 1} \right){{\left( {{y_1}} \right)}^2}} \right) = \dfrac{{d\left( {{m^2}{y^2}} \right)}}{{dx}}
Apply product rule of differentiation and y2=d2ydx2{y_2} = \dfrac{{{d^2}y}}{{d{x^2}}} .

(y12)×2x+(x21)×2y1×y2=m2×2y×y1 2y1((x21)y2+xy1)=2y1×m2y  \Rightarrow \left( {{y_1}^2} \right) \times 2x + \left( {{x^2} - 1} \right) \times 2{y_1} \times {y_2} = {m^2} \times 2y \times {y_1} \\\ \Rightarrow 2{y_1}\left( {\left( {{x^2} - 1} \right){y_2} + x{y_1}} \right) = 2{y_1} \times {m^2}y \\\

From above equation 2y12{y_1} cancel from both sides.
(x21)y2+xy1=m2y\left( {{x^2} - 1} \right){y_2} + x{y_1} = {m^2}y
So, the correct option is (a).

Note-Whenever we face such types of problems we use some important points. First we convert given equation into y=f(x) by using quadratic formula then differentiate y=f(x) with respect to x and put the values of first and second derivative in (x21)y2+xy1\left( {{x^2} - 1} \right){y_2} + x{y_1} . So, we get the required answer.