Question
Mathematics Question on Derivatives
If y=cot−1(tan2x), then dxdy is equal to
A
21
B
0
C
2x
D
−21
Answer
−21
Explanation
Solution
y=cot−1(tan2x) y=cot−1cot(2π−2x) y=2π−2x
Differentiating w.r.t. x on both sides,
dxdy=−21
If y=cot−1(tan2x), then dxdy is equal to
21
0
2x
−21
−21
y=cot−1(tan2x) y=cot−1cot(2π−2x) y=2π−2x
Differentiating w.r.t. x on both sides,
dxdy=−21