Solveeit Logo

Question

Question: If \[y=\cot^{-1} \left( \sqrt{\cos x} \right) -\tan^{-1} \left( \sqrt{\cos x} \right) \], then prove...

If y=cot1(cosx)tan1(cosx)y=\cot^{-1} \left( \sqrt{\cos x} \right) -\tan^{-1} \left( \sqrt{\cos x} \right) , then prove that siny=tan2x2\sin y=\tan^{2} \dfrac{x}{2}.

Explanation

Solution

Hint: In this question it is given that y=cot1(cosx)tan1(cosx)y=\cot^{-1} \left( \sqrt{\cos x} \right) -\tan^{-1} \left( \sqrt{\cos x} \right) ,
We have to prove that siny=tan2x2\sin y=\tan^{2} \dfrac{x}{2}.
So to find the solution we have to first convert the cot1θ\cot^{-1} \theta into tan1θ\tan^{-1} \theta and after that we have to use the formula,
tan1αtan1β=tan1(αβ1+αβ)\tan^{-1} \alpha -\tan^{-1} \beta =\tan^{-1} \left( \dfrac{\alpha -\beta }{1+\alpha \beta } \right) .........(1)
After using it by simplification we are able to find the solution.

Complete step-by-step solution:
Given,
y=cot1(cosx)tan1(cosx)y=\cot^{-1} \left( \sqrt{\cos x} \right) -\tan^{-1} \left( \sqrt{\cos x} \right)
y=tan1(1cosx)tan1(cosx)\Rightarrow y=\tan^{-1} \left( \dfrac{1}{\sqrt{\cos x} } \right) -\tan^{-1} \left( \sqrt{\cos x} \right) [cot1α=tan11α\because \cot^{-1} \alpha =\tan^{-1} \dfrac{1}{\alpha }]
Now by using the formula (1) we can write the above equation as,
y=tan1(1cosxcosx1+1cosxcosx)y=\tan^{-1} \left( \dfrac{\dfrac{1}{\sqrt{\cos x} } -\sqrt{\cos x} }{1+\dfrac{1}{\sqrt{\cos x} } \cdot \sqrt{\cos x} } \right)
y=tan1(1(cosx)2cosx1+1)\Rightarrow y=\tan^{-1} \left( \dfrac{\dfrac{1-\left( \sqrt{\cos x} \right)^{2} }{\sqrt{\cos x} } }{1+1} \right)
y=tan1(1cosxcosx2)\Rightarrow y=\tan^{-1} \left( \dfrac{\dfrac{1-\cos x}{\sqrt{\cos x} } }{2} \right)
y=tan1(1cosx2cosx)\Rightarrow y=\tan^{-1} \left( \dfrac{1-\cos x}{2\sqrt{\cos x} } \right)
tany=(1cosx2cosx)\Rightarrow \tan y=\left( \dfrac{1-\cos x}{2\sqrt{\cos x} } \right)
Now as we know that,cotθ=1tanθ\cot \theta =\dfrac{1}{\tan \theta }, therefore the above equation can be written as,
coty=1tany\cot y=\dfrac{1}{\tan y}
coty=1(1cosx2cosx)\Rightarrow \cot y=\dfrac{1}{\left( \dfrac{1-\cos x}{2\sqrt{\cos x} } \right) }
coty=2cosx1cosx\Rightarrow \cot y=\dfrac{2\sqrt{\cos x} }{1-\cos x}............(1)
Now as we know that, csc2θ=1+cot2θ\csc^{2} \theta =1+\cot^{2} \theta
So by using the above formula we can write,
csc2y=1+cot2y\csc^{2} y=1+\cot^{2} y
csc2y=1+(2cosx1cosx)2\Rightarrow \csc^{2} y=1+\left( \dfrac{2\sqrt{\cos x} }{1-\cos x} \right)^{2} [from equation (1)]
csc2y=1+(2cosx)2(1cosx)2\Rightarrow \csc^{2} y=1+\dfrac{\left( 2\sqrt{\cos x} \right)^{2} }{\left( 1-\cos x\right)^{2} }
csc2y=1+22cosx(1cosx)2\Rightarrow \csc^{2} y=1+\dfrac{2^{2}\cos x}{\left( 1-\cos x\right)^{2} }
csc2y=(1cosx)2+4cosx(1cosx)2\Rightarrow \csc^{2} y=\dfrac{\left( 1-\cos x\right)^{2} +4\cos x}{\left( 1-\cos x\right)^{2} }..........(2)
As we know that (ab)2=a22ab+b2\left( a-b\right)^{2} =a^{2}-2ab+b^{2}
By using this identity where a=1, b=cosx\cos x, the above equation can be written as,
csc2y=122cosx+cos2x+4cosx(1cosx)2\csc^{2} y=\dfrac{1^{2}-2\cos x+\cos^{2} x+4\cos x}{\left( 1-\cos x\right)^{2} }
csc2y=122cosx+4cosx+cos2x(1cosx)2\Rightarrow \csc^{2} y=\dfrac{1^{2}-2\cos x+4\cos x+\cos^{2} x}{\left( 1-\cos x\right)^{2} }
csc2y=12+2cosx+cos2x(1cosx)2\Rightarrow \csc^{2} y=\dfrac{1^{2}+2\cos x+\cos^{2} x}{\left( 1-\cos x\right)^{2} }
Now again as we know that a2+2ab+b2=(a+b)2a^{2}+2ab+b^{2}=\left( a+b\right)^{2}
So by using this identity where a=1, b=cosx\cos x, the above equation can be written as,
csc2y=(1+cosx)2(1cosx)2\csc^{2} y=\dfrac{\left( 1+\cos x\right)^{2} }{\left( 1-\cos x\right)^{2} }
csc2y=(1+cosx1cosx)2\Rightarrow \csc^{2} y=\left( \dfrac{1+\cos x}{1-\cos x} \right)^{2}
cscy=(1+cosx1cosx)\Rightarrow \csc y=\left( \dfrac{1+\cos x}{1-\cos x} \right) [Omitting square from the both side]
1sinx=(1+cosx1cosx)\Rightarrow \dfrac{1}{\sin x} =\left( \dfrac{1+\cos x}{1-\cos x} \right) [cscθ=1sinθ\because \csc \theta =\dfrac{1}{\sin \theta }]
sinx=(1cosx1+cosx)\Rightarrow \sin x=\left( \dfrac{1-\cos x}{1+\cos x} \right)
Now we have to use two trigonometric identities, which are,
1+cosθ=2cos2θ21+\cos \theta =2\cos^{2} \dfrac{\theta }{2} and
1cosθ=2sin2θ21-\cos \theta =2\sin^{2} \dfrac{\theta }{2}
So by using these identity we can write the above equation as,
sinx=(2sin2x22cos2x2)\sin x=\left( \dfrac{2\sin^{2} \dfrac{x}{2} }{2\cos^{2} \dfrac{x}{2} } \right) [where θ=x\theta =x]
sinx=tan2x2\Rightarrow \sin x=\tan^{2} \dfrac{x}{2}
Hence proved.

Note: While solving we have transformed tany\tan y into coty\cot y, this is because as we know that our solution is in the form of siny\sin y and to convert it into siny\sin y we need cscy\csc y and so if we transform tany\tan y into coty\cot y then we can easily transform coty\cot y into cscy\csc y by the formula csc2y=1+cot2y\csc^{2} y=1+\cot^{2} y.