Solveeit Logo

Question

Question: If \(y = {\cot ^{ - 1}}\left( {\dfrac{{1 - 3{x^2}}}{{3x - {x^3}}}} \right)\); \(\left| x \right| > \...

If y=cot1(13x23xx3)y = {\cot ^{ - 1}}\left( {\dfrac{{1 - 3{x^2}}}{{3x - {x^3}}}} \right); x>13\left| x \right| > \dfrac{1}{{\sqrt 3 }} then evaluate dydx\dfrac{{dy}}{{dx}}

Explanation

Solution

Here we will first simplify the given equation using suitable trigonometric identities and also different inverse trigonometric identities. Then we will differentiate the simplified equation to get the required answer.

Complete step-by-step answer:
The given equation is y=cot1(13x23xx3)y = {\cot ^{ - 1}}\left( {\dfrac{{1 - 3{x^2}}}{{3x - {x^3}}}} \right) ; where x>13\left| x \right| > \dfrac{1}{{\sqrt 3 }}.
Here we will first simplify the given equation.
Let x=cotθx = \cot \theta
So we can write it as cot1x=θ{\cot ^{ - 1}}x = \theta ………………….(1)\left( 1 \right)
Now, we will substitute the value x=cotθx = \cot \theta in the given equation. Therefore, we get
y=cot1(13cot2θ3cotθcot3θ)\Rightarrow y = {\cot ^{ - 1}}\left( {\dfrac{{1 - 3{{\cot }^2}\theta }}{{3\cot \theta - {{\cot }^3}\theta }}} \right)
We know from the inverse trigonometric identities that cot1(x)=tan1(1x){\cot ^{ - 1}}\left( x \right) = {\tan ^{ - 1}}\left( {\dfrac{1}{x}} \right).
Using this identity in above equation, we get
y=tan1(3cotθcot3θ13cot2θ)\Rightarrow y = {\tan ^{ - 1}}\left( {\dfrac{{3\cot \theta - {{\cot }^3}\theta }}{{1 - 3{{\cot }^2}\theta }}} \right)
On multiplying 1 - 1 to numerator and denominator, we get
y=tan1(cot3θ3cotθ3cot2θ1)\Rightarrow y = {\tan ^{ - 1}}\left( {\dfrac{{{{\cot }^3}\theta - 3\cot \theta }}{{3{{\cot }^2}\theta - 1}}} \right)
Using trigonometric identities cot3θ=cot3θ3cotθ3cot2θ1\cot 3\theta = \dfrac{{{{\cot }^3}\theta - 3\cot \theta }}{{3{{\cot }^2}\theta - 1}} in the above equation, we get
y=tan1(cot3θ)\Rightarrow y = {\tan ^{ - 1}}\left( {\cot 3\theta } \right)
We know that periodic trigonometric identities cotθ=tan(π2θ)\cot \theta = \tan \left( {\dfrac{\pi }{2} - \theta } \right).
Now, we will use this trigonometric identity in the above equation. Therefore, we get
y=tan1(tan(π23θ))\Rightarrow y = {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{2} - 3\theta } \right)} \right)
Now, using the inverse trigonometric identity tan1(tanθ)=θ{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta , we get
y=π23θ\Rightarrow y = \dfrac{\pi }{2} - 3\theta
Now, we will substitute the value of θ\theta as obtained in equation (1)\left( 1 \right) in the above equation. Therefore, we get
y=π23cot1x\Rightarrow y = \dfrac{\pi }{2} - 3{\cot ^{ - 1}}x
Now, we will differentiate both sides of the equation with respect to xx.
dydx=ddx(π23cot1x)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{\pi }{2} - 3{{\cot }^{ - 1}}x} \right)
dydx=03(11+x2)\Rightarrow \dfrac{{dy}}{{dx}} = 0 - 3\left( { - \dfrac{1}{{1 + {x^2}}}} \right)
On further simplification, we get
dydx=31+x2\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{3}{{1 + {x^2}}}
Hence, this is the required answer.

Note: Trigonometric identities are defined as the equalities which include the trigonometric functions and they are always true for every value of the variables. Inverse trigonometric identities are defined as the equalities which include the trigonometric functions and they are always true for every value of the variables. Trigonometric identities are used only when the equation contains a trigonometric function.