Solveeit Logo

Question

Question: If y = cos<sup>–1</sup>\(\left( \frac{3\cos x + 5\sin x}{\sqrt{34}} \right)\), then \(\frac{dy}{dx}\...

If y = cos–1(3cosx+5sinx34)\left( \frac{3\cos x + 5\sin x}{\sqrt{34}} \right), then dydx\frac{dy}{dx} is –

A

0

B

– 1

C

1

D

None of these

Explanation

Solution

let y = cos–1[334cosx+534cosx]5=rcosθ3=rsinθ \left\lbrack \frac{3}{\sqrt{34}}\cos x + \frac{5}{\sqrt{34}}\cos x \right\rbrack\left| {}_{5 = r\cos\theta}^{3 = r\sin\theta} \right.\

r = 34\sqrt{34} & q = tan–135\frac{3}{5}

y = cos–1[sinq.cosx + cosq.sinx]

= cos–1[sin(x+q)] = cos–1(cos(x2xθ))\left( \cos{}\left( \frac{x}{2} - x - \theta \right) \right)

y = π2\frac{\pi}{2}– x – q = π2\frac{\pi}{2}– x – tan–135\frac{3}{5}

\frac{dy}{dx} = - 1 \end{matrix}$$