Solveeit Logo

Question

Question: If \(y = |\cos x| + |\sin x|\) then \(\frac{dy}{dx}\) at \(x = \frac{2\pi}{3}\) is...

If y=cosx+sinxy = |\cos x| + |\sin x| then dydx\frac{dy}{dx} at x=2π3x = \frac{2\pi}{3} is

A

132\frac{1 - \sqrt{3}}{2}

B

0

C

12(31)\frac{1}{2}(\sqrt{3} - 1)

D

None of these

Answer

12(31)\frac{1}{2}(\sqrt{3} - 1)

Explanation

Solution

Around x=2π3,x = \frac{2\pi}{3}, cosx=cosx|\cos x| = - \cos x and sinx=sinx|\sin x| = \sin x

\therefore y=cosx+sinxy = - \cos x + \sin x \therefore dydx=sinx+cosx\frac{dy}{dx} = \sin x + \cos x

At x=2π3x = \frac{2\pi}{3}, dydx=sin2π3+cos2π3\frac{dy}{dx} = \sin\frac{2\pi}{3} + \cos\frac{2\pi}{3} = 3212=12(31)\frac{\sqrt{3}}{2} - \frac{1}{2} = \frac{1}{2}(\sqrt{3} - 1).