Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If y=cosx+sinxy = | \cos\, x | + | \sin\, x |, then dydx\frac{dy}{dx} at x=2π3x = \frac{2 \pi}{3} is

A

132\frac{1 - \sqrt{3}}{2}

B

00

C

12(31)\frac{1}{2} ( \sqrt{3} - 1)

D

NoneoftheseNone\, of\, these

Answer

12(31)\frac{1}{2} ( \sqrt{3} - 1)

Explanation

Solution

We have, y=cosx+sinxy = | \cos\, x | + | \sin\, x |
At x=2π3,cosxx = \frac{2 \pi}{3} , \cos \, x is -ve and sinx\sin \, x is +ve
y=cosx+sinx\therefore \:\:\:\: y = -\cos \, x + \sin \, x
dydx=sinx+cosx\Rightarrow \:\: \frac{dy}{dx} = \sin \, x + \cos \, x
dydxatx=2π/3=sin(2π3)+cos(2π3)\therefore \:\: \frac{dy}{dx} \bigg|_{at \, x = 2 \pi / 3} = \sin \bigg( \frac{2 \pi}{3} \bigg) + \cos \bigg( \frac{2 \pi}{3} \bigg)
=3212=312= \frac{\sqrt{3}}{2} - \frac{1}{2} = \frac{\sqrt{3} - 1}{2}