Solveeit Logo

Question

Question: If \[y = \cos ecx + \cot x\], then find: \[\sin x\dfrac{{{d^2}y}}{{d{x^2}}} + {y^2}\]....

If y=cosecx+cotxy = \cos ecx + \cot x, then find: sinxd2ydx2+y2\sin x\dfrac{{{d^2}y}}{{d{x^2}}} + {y^2}.

Explanation

Solution

In this problem, first we need to find the first derivative of the given function. Then, find the second derivative of the function and simplify it by back substitution. Now substitute the obtained expressions into the given differential equation.

Complete step by step answer:
The first derivative of the function y=cosecx+cotxy = \cos ecx + \cot x is obtained as shown below.

dydx=ddx(cosecx+cotx) =ddx(cosecx)+ddx(cotx) =(cosecxcotx)+(cosec2x) =cosecx(cotx+cosecx) =ycosecx  \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\cos ecx + \cot x} \right) \\\ = \dfrac{d}{{dx}}\left( {\cos ecx} \right) + \dfrac{d}{{dx}}\left( {\cot x} \right) \\\ = \left( { - \cos ecx\cot x} \right) + \left( { - \cos e{c^2}x} \right) \\\ = - \cos ecx\left( {\cot x + \cos ecx} \right) \\\ = - y\cos ecx \\\

Now, find the second derivative of the function y=cosecx+cotxy = \cos ecx + \cot x using the product rule as shown below.

ddx(dydx)=ddx(ycosecx) d2ydx2=[yddx(cosecx)+cosecxddx(y)] =[y(cosecxcotx)+cosecxdydx] =[ycosecxcotx+cosecxdydx]  \dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{dx}}} \right) = - \dfrac{d}{{dx}}\left( {y\cos ecx} \right) \\\ \dfrac{{{d^2}y}}{{d{x^2}}} = - \left[ {y\dfrac{d}{{dx}}\left( {\cos ecx} \right) + \cos ecx\dfrac{d}{{dx}}\left( y \right)} \right] \\\ = - \left[ {y\left( { - \cos ecx\cot x} \right) + \cos ecx\dfrac{{dy}}{{dx}}} \right] \\\ = - \left[ { - y\cos ecx\cot x + \cos ecx\dfrac{{dy}}{{dx}}} \right] \\\

Now, substitute ycosecx- y\cos ecx for dydx\dfrac{{dy}}{{dx}} in the above expression.

d2ydx2=[ycosecxcotx+cosecx(ycosecx)] =(ycosecx)[cotx+cosecx] =ycosecx[y] =y2cosecx  \dfrac{{{d^2}y}}{{d{x^2}}} = - \left[ { - y\cos ecx\cot x + \cos ecx\left( { - y\cos ecx} \right)} \right] \\\ = - \left( { - y\cos ecx} \right)\left[ {\cot x + \cos ecx} \right] \\\ = y\cos ecx\left[ y \right] \\\ = {y^2}\cos ecx \\\

Now, substitute y2cosecx{y^2}\cos ecx for d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} in expression sinxd2ydx2+y2\sin x\dfrac{{{d^2}y}}{{d{x^2}}} + {y^2}.

sinx(y2cosecx)+y2 sinx(y21sinx)+y2 y2+y2 2y2  \,\,\,\,\,\sin x\left( {{y^2}\cos ecx} \right) + {y^2} \\\ \Rightarrow \sin x\left( {{y^2} \cdot \dfrac{1}{{\sin x}}} \right) + {y^2} \\\ \Rightarrow {y^2} + {y^2} \\\ \Rightarrow 2{y^2} \\\

Thus, the expression for the differential equation sinxd2ydx2+y2\sin x\dfrac{{{d^2}y}}{{d{x^2}}} + {y^2} is 2y22{y^2} .

Note: Always use back substitution while obtaining the first and second derivatives in order to minimize the complexity. The second derivative of the function f is derivative of derivative of the function f. The second derivative measures the instantaneous rate of change of the first derivative. In other words the second derivative tells whether the slope of the tangent line is increasing or decreasing.