Question
Mathematics Question on Continuity and differentiability
If y=cos−1x,find dx2d2y in terms of y alone.
Answer
The correct answer is ⇒dx2d2y=−coty.cosec2y
It is given that,y=cos−1x
Then,
dxdy=dxd(cos−1x)=1−x2−1=−(1−x2)2−1
dx2d2y=dxd[−(1−x2)2−1]
=−(2−1).(1−x2)2−3.dxd(1−x2)
=2(1−x2)31×(−2x)
⇒dx2d2y=(1−x2)3−x...(i)
y=cos−1x
⇒x=cosy
Putting x=cosy in equation (i),we obtain
dx2d2y=(1−cos2y)3−cosy
⇒dx2d2y=(sin2y)3−cosy
=sin3y−cosy
=siny−cosy×sin2y1
⇒dx2d2y=−coty.cosec2y