Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If y=cos1xy=cos^{-1}x,find d2ydx2\frac{d^2y}{dx^2} in terms of yy alone.

Answer

The correct answer is d2ydx2=coty.cosec2y⇒\frac{d^2y}{dx^2}=-coty.cosec^2y
It is given that,y=cos1xy=cos^{-1}x
Then,
dydx=ddx(cos1x)=11x2=(1x2)12\frac{dy}{dx}=\frac{d}{dx}(cos^{-1}x)=\frac{-1}{\sqrt{1-x^2}}=-(1-x^2)^{\frac{-1}{2}}
d2ydx2=ddx[(1x2)12]\frac{d^2y}{dx^2}=\frac{d}{dx}[-(1-x^2)^{\frac{-1}{2}}]
=(12).(1x2)32.ddx(1x2)=-(\frac{-1}{2}).(1-x^2)^{\frac{-3}{2}}.\frac{d}{dx}(1-x^2)
=12(1x2)3×(2x)=\frac{1}{2\sqrt{(1-x^2)^3}}\times (-2x)
d2ydx2=x(1x2)3...(i)⇒\frac{d^2y}{dx^2}=\frac{-x}{\sqrt{(1-x^2)^3}} ...(i)
y=cos1xy=cos^{-1}x
x=cosy⇒x=cosy
Putting x=cosyx=cosy in equation (i)(i),we obtain
d2ydx2=cosy(1cos2y)3\frac{d^2y}{dx^2}=\frac{-cosy}{\sqrt{(1-cos^2y)^3}}
d2ydx2=cosy(sin2y)3⇒\frac{d^2y}{dx^2}=\frac{-cosy}{\sqrt{(sin^2y)^3}}
=cosysin3y=\frac{-cosy}{sin^3y}
=cosysiny×1sin2y=\frac{-cosy}{siny}\times\frac{1}{sin^2y}
d2ydx2=coty.cosec2y⇒\frac{d^2y}{dx^2}=-coty.cosec^2y