Solveeit Logo

Question

Question: If \(y = {\cos ^{ - 1}}\left( {\dfrac{{x - {x^{ - 1}}}}{{x + {x^{ - 1}}}}} \right)\), then \(\dfrac{...

If y=cos1(xx1x+x1)y = {\cos ^{ - 1}}\left( {\dfrac{{x - {x^{ - 1}}}}{{x + {x^{ - 1}}}}} \right), then dydx=\dfrac{{dy}}{{dx}} =
A. 21+x2\dfrac{{ - 2}}{{1 + {x^2}}}
B. 21+x2\dfrac{2}{{1 + {x^2}}}
C. 11+x2\dfrac{1}{{1 + {x^2}}}
D. 11+x2\dfrac{{ - 1}}{{1 + {x^2}}}

Explanation

Solution

Here, we have to find the derivative of y=cos1(xx1x+x1)y = {\cos ^{ - 1}}\left( {\dfrac{{x - {x^{ - 1}}}}{{x + {x^{ - 1}}}}} \right). For that, first of all substitute x1=1x{x^{ - 1}} = \dfrac{1}{x} and then take the LCM and simplify. Then take out minus (-) common from numerator and use the formula
cos1(θ)=πcosθ\Rightarrow {\cos ^{ - 1}}\left( { - \theta } \right) = \pi - \cos \theta and
cos1(1x21+x2)=2tan1x\Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right) = 2{\tan ^{ - 1}}x
Now, we can easily find the derivative of the given function.

Complete step-by-step answer:
In this question, we are given a trigonometric equation and we need to find its derivative.
The given equation is : y=cos1(xx1x+x1)y = {\cos ^{ - 1}}\left( {\dfrac{{x - {x^{ - 1}}}}{{x + {x^{ - 1}}}}} \right) - - - - - - - - - - - - - (1)
Now, there is no direct formula for differentiating equation (1), so we need to use some trigonometric formulas and relations to find its derivative.
First of all, x inverse means reciprocal of x. Therefore, substitute 1x\dfrac{1}{x} instead of x1{x^{ - 1}} in equation (1), we get
y=cos1(x1xx+1x)\Rightarrow y = {\cos ^{ - 1}}\left( {\dfrac{{x - \dfrac{1}{x}}}{{x + \dfrac{1}{x}}}} \right)
Now, taking LCM, we get
y=cos1(x21xx2+1x)\Rightarrow y = {\cos ^{ - 1}}\left( {\dfrac{{\dfrac{{{x^2} - 1}}{x}}}{{\dfrac{{{x^2} + 1}}{x}}}} \right)
Here, x gets cancelled. Therefore, we get
y=cos1(x21x2+1)\Rightarrow y = {\cos ^{ - 1}}\left( {\dfrac{{{x^2} - 1}}{{{x^2} + 1}}} \right)- - - - - - - - - (2)
Now, take out minus (-) common from the numerator in equation (2), we get
y=cos1[(1x21+x2)]\Rightarrow y = {\cos ^{ - 1}}\left[ { - \left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)} \right] - - - - - - - - - (3)
Now, we know that cos1(θ)=πcosθ{\cos ^{ - 1}}\left( { - \theta } \right) = \pi - \cos \theta . Therefore, equation (3) becomes
y=πcos1(1x21+x2)\Rightarrow y = \pi - {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right) - - - - - - (4)
Now, we know that cos1(1x21+x2)=2tan1x{\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right) = 2{\tan ^{ - 1}}x.
Therefore, putting this value in equation (4), we get
y=π2tan1x\Rightarrow y = \pi - 2{\tan ^{ - 1}}x
Now, differentiating the above equation, we get
dydx=02ddxtan1x\Rightarrow \dfrac{{dy}}{{dx}} = 0 - 2\dfrac{d}{{dx}}{\tan ^{ - 1}}x
Now, we know that the derivative of tan1x{\tan ^{ - 1}}x is equal to 11+x2\dfrac{1}{{1 + {x^2}}}.
Therefore,
dydx=21+x2\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 2}}{{1 + {x^2}}}

So, the correct answer is “Option A”.

Note: Here is the proof for cos1(1x21+x2)=2tan1x{\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right) = 2{\tan ^{ - 1}}x.
Let us take LHS.
LHS=cos1(1x21+x2)\Rightarrow LHS = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)
Now, let x=tanθx = \tan \theta
θ=tan1x\Rightarrow \theta = {\tan ^{ - 1}}x
LHS=cos1(1tan2θ1+tan2θ) LHS=cos1(cos2θ) LHS=2θ LHS=2tan1x  \Rightarrow LHS = {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right) \\\ \Rightarrow LHS = {\cos ^{ - 1}}\left( {\cos 2\theta } \right) \\\ \Rightarrow LHS = 2\theta \\\ \Rightarrow LHS = 2{\tan ^{ - 1}}x \\\