Solveeit Logo

Question

Question: If \(y = {\cos ^{ - 1}}\left[ {\dfrac{{\left( {3\cos x - 4\sin x} \right)}}{5}} \right]\) then \(\df...

If y=cos1[(3cosx4sinx)5]y = {\cos ^{ - 1}}\left[ {\dfrac{{\left( {3\cos x - 4\sin x} \right)}}{5}} \right] then dydx\dfrac{{dy}}{{dx}} equals:
(1)0\left( 1 \right)0
(2)1\left( 2 \right)1
(3)1\left( 3 \right) - 1
(4)12\left( 4 \right)\dfrac{1}{2}

Explanation

Solution

To solve this question, the standard trigonometric identity formulae and basic algebraic
operations have to be kept in mind. Trigonometric identities are equations involving functions which are true for all the angles for which the particular functions are defined. For example: cosθ=1secθ\cos \theta = \dfrac{1}{{\sec \theta }} and sinθ=1cosecθ\sin \theta = \dfrac{1}{{\cos ec\theta }} , are trigonometric identities since they hold for all values of θ\theta except for values where sinθ\sin \theta and cosθ\cos \theta are not defined. The equation tanθ=cotθ\tan \theta = \cot \theta is a trigonometric equation but it
is not a trigonometric identity as it does not hold true for all the values of θ\theta .

Complete step by step answer:
According to the given question;
y=cos1(3cosx4sinx5)\Rightarrow y = {\cos ^{ - 1}}\left( {\dfrac{{3\cos x - 4\sin x}}{5}} \right)
It can also be written as;
y=(35cosx45sinx) ......(1)\Rightarrow y = \left( {\dfrac{3}{5}\cos x - \dfrac{4}{5}\sin x} \right){\text{ }}......\left( 1 \right)
Let 35=cosθ\dfrac{3}{5} = \cos \theta
We know that, cosθ=AdjacentHypotenuse\cos \theta = \dfrac{{{\text{Adjacent}}}}{{{\text{Hypotenuse}}}}
cosθ=bh\Rightarrow \cos \theta = \dfrac{b}{h}
Here, b=3 and h=5b = 3{\text{ and }}h = 5 ;
According to the Pythagoras theorem; h2=p2+b2{h^2} = {p^2} + {b^2}
Therefore perpendicular will be p = h2b2 {\text{p = }}\sqrt {{{\text{h}}^2} - {{\text{b}}^2}} {\text{ }}
5232 = 4\therefore {\text{P }} \Rightarrow \sqrt {{5^2} - {3^2}} {\text{ = 4}}
sinθ=Perpendicular hypotenuse\because \sin \theta = \dfrac{{{\text{Perpendicular }}}}{{{\text{hypotenuse}}}}
sinθ=ph\Rightarrow \sin \theta = \dfrac{p}{h}
sinθ=45\Rightarrow \sin \theta = \dfrac{4}{5}
Therefore, cosθ=35 and sinθ = 45\cos \theta = \dfrac{3}{5}{\text{ and sin}}\theta {\text{ = }}\dfrac{4}{5} .
Put the values of cosθ and sinθ\cos \theta {\text{ and sin}}\theta in equation (1)\left( 1 \right), we get;
y=cos1(cosθcosxsinθsinx) ......(2)\Rightarrow y = {\cos ^{ - 1}}\left( {\cos \theta \cos x - \sin \theta \sin x} \right){\text{ }}......\left( 2 \right)
We know the standard formula for ; cos(A+B)=cosA cosBsinAsinB\cos \left( {{\text{A}} + {\text{B}}} \right) = \cos {\text{A cosB}} - \sin {\text{A}}\sin {\text{B}}
Using the above formula in equation (1)\left( 1 \right) , we get;
y=cos1(cos(θ+x)) ......(3)\Rightarrow y = {\cos ^{ - 1}}\left( {\cos \left( {\theta + x} \right)} \right){\text{ }}......\left( 3 \right) (Here , A = θ and B = x)\left( {{\text{Here , A = }}\theta {\text{ and B = x}}} \right)
We know that the cosine function and its inverse function cancels each other;
Therefore equation (3)\left( 3 \right), reduces to;
y=θ+x ......(4)\Rightarrow y = \theta + x{\text{ }}......\left( 4 \right)
cosθ=35 θ = cos135\because \cos \theta = \dfrac{3}{5}{\text{ }}\therefore \theta {\text{ = co}}{{\text{s}}^{ - 1}}\dfrac{3}{5}
Now, put the value of θ\theta , in equation (4)\left( 4 \right) we get;
y=cos135+x\Rightarrow y = {\cos ^{ - 1}}\dfrac{3}{5} + x
( cos135\because {\cos ^{ - 1}}\dfrac{3}{5} has a constant angle therefore it’s differentiation will be 0 )
Differentiating the above equation w.r.t. xx ;
dydx=0+ddx(x)\Rightarrow \dfrac{{dy}}{{dx}} = 0 + \dfrac{d}{{dx}}\left( x \right)
dydx=1\Rightarrow \dfrac{{dy}}{{dx}} = 1
Therefore, the correct answer for this question is dydx=1\dfrac{{dy}}{{dx}} = 1 .

So, the correct answer is “Option 2”.

Note: We have used the standard formula of cosine of the difference and sum of two angles, i.e.
(1)cos(A+B)=cosA cosBsinAsinB\left( 1 \right)\cos \left( {{\text{A}} + {\text{B}}} \right) = \cos {\text{A cosB}} - \sin {\text{A}}\sin {\text{B}} , this formula holds true for all values of angles of A and B{\text{A and B}} , whether positive, negative or zero. (2)cos(AB)=cosA cosB + sinAsinB\left( 2 \right)\cos \left( {{\text{A}} - {\text{B}}} \right) = \cos {\text{A cosB + }}\sin {\text{A}}\sin {\text{B}} . Similarly the formula for sine of the difference and sum of two angles is (3)sin(A+B)=sinA cosB + cosAsinB\left( 3 \right)\sin \left( {{\text{A}} + {\text{B}}} \right) = \sin {\text{A cosB + cosA}}\sin {\text{B}} and (4)sin(AB)=sinA cosBcosAsinB\left( 4 \right)\sin \left( {{\text{A}} - {\text{B}}} \right) = \sin {\text{A cosB}} - {\text{cosA}}\sin {\text{B}} .