Solveeit Logo

Question

Question: If \(y = \cos^{- 1}\left( \frac{5\cos x - 12\sin x}{13} \right)\), \(x \in \left( 0,\frac{\pi}{2} \r...

If y=cos1(5cosx12sinx13)y = \cos^{- 1}\left( \frac{5\cos x - 12\sin x}{13} \right), x(0,π2)x \in \left( 0,\frac{\pi}{2} \right), then dydx\frac{dy}{dx} is equal to

A

1

B

– 1

C

0

D

None of these

Answer

1

Explanation

Solution

Let cosα=513\cos\alpha = \frac{5}{13}. Then sinα=1213\sin\alpha = \frac{12}{13}.

So, y=cos1{cosα.cosxsinα.sinx}y = \cos^{- 1}\{\cos\alpha.\cos x - \sin\alpha.\sin x\}

y=cos1{cos(x+α)}=x+α\therefore y = \cos^{- 1}\{\cos(x + \alpha)\} = x + \alpha

(x+α\because x + \alpha is in the first or the second quadrant)

\therefore dydx=1\frac{dy}{dx} = 1.