Solveeit Logo

Question

Question: If Y-axis is the directrix of the ellipse with eccentricity \(e = \dfrac{1}{2}\) and the correspondi...

If Y-axis is the directrix of the ellipse with eccentricity e=12e = \dfrac{1}{2} and the corresponding focus is at (3,0), find the equation to its auxiliary circle.
A. x2+y28x+12=0 B. x2+y28x12=0 C. x2+y28x+9=0 D. x2+y2=4  {\text{A}}{\text{. }}{x^2} + {y^2} - 8x + 12 = 0 \\\ {\text{B}}{\text{. }}{x^2} + {y^2} - 8x - 12 = 0 \\\ {\text{C}}{\text{. }}{x^2} + {y^2} - 8x + 9 = 0 \\\ {\text{D}}{\text{. }}{x^2} + {y^2} = 4 \\\

Explanation

Solution

Hint- Here, we will proceed by using the formulas for the equation of directrix i.e.,x=haex = h - \dfrac{a}{e} , the focus coordinates i.e., F(h-ae,k) and b2=a2(1e2){b^2} = {a^2}\left( {1 - {e^2}} \right) corresponding to any ellipse (xh)2a2+(yk)2b2=1\dfrac{{{{\left( {x - h} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - k} \right)}^2}}}{{{b^2}}} = 1 where a>b.

Complete step by step answer:


Given, Directrix to the given ellipse is represented by equation of Y-axis i.e., x = 0
Eccentricity, e=12e = \dfrac{1}{2}
Focus of the ellipse is at F(3,0)
Since, the directrix of the given ellipse lies along the Y-axis. Therefore, the ellipse will be oriented along the X-axis.
Let the equation of the ellipse along Y-axis is given by (xh)2a2+(yk)2b2=1 (1)\dfrac{{{{\left( {x - h} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - k} \right)}^2}}}{{{b^2}}} = 1{\text{ }} \to {\text{(1)}} where a>b and the centre of the ellipse lies at point C(h,k).
As we know that the equation of the directrix to any ellipse (xh)2a2+(yk)2b2=1\dfrac{{{{\left( {x - h} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - k} \right)}^2}}}{{{b^2}}} = 1 (having eccentricity as e) where a>b is given by
x=haex = h - \dfrac{a}{e}
For the given ellipse, equation of the directrix is x = 0
0=hae h=ae  \Rightarrow 0 = h - \dfrac{a}{e} \\\ \Rightarrow h = \dfrac{a}{e} \\\
By putting e=12e = \dfrac{1}{2} in the above equation, we get
h=a(12) h=2a (2)  \Rightarrow h = \dfrac{a}{{\left( {\dfrac{1}{2}} \right)}} \\\ \Rightarrow h = 2a{\text{ }} \to {\text{(2)}} \\\
Also, the focus coordinates for any ellipse (xh)2a2+(yk)2b2=1\dfrac{{{{\left( {x - h} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - k} \right)}^2}}}{{{b^2}}} = 1 (having eccentricity as e) where a>b is given by F(h-ae,k)
Also, focus of the given ellipse is F(3,0)
So, h-ae = 3
2aa(12)=3 2aa2=3 4aa2=3 3a2=3 a=2  \Rightarrow 2a - a\left( {\dfrac{1}{2}} \right) = 3 \\\ \Rightarrow 2a - \dfrac{a}{2} = 3 \\\ \Rightarrow \dfrac{{4a - a}}{2} = 3 \\\ \Rightarrow \dfrac{{3a}}{2} = 3 \\\ \Rightarrow a = 2 \\\
Hence, a2=22=4{a^2} = {2^2} = 4
Also, k = 0
Using the formula b2=a2(1e2){b^2} = {a^2}\left( {1 - {e^2}} \right), the value of b2{b^2} is given as
b2=4(1(12)2)=4(114)=4(414)=4(34) b2=3  \Rightarrow {b^2} = 4\left( {1 - {{\left( {\dfrac{1}{2}} \right)}^2}} \right) = 4\left( {1 - \dfrac{1}{4}} \right) = 4\left( {\dfrac{{4 - 1}}{4}} \right) = 4\left( {\dfrac{3}{4}} \right) \\\ \Rightarrow {b^2} = 3 \\\
Putting a = 2 in equation (2), we get
h=2×2=4\Rightarrow h = 2 \times 2 = 4
Putting a2=4{a^2} = 4, b2=3{b^2} = 3, h = 4 and k = 0 in equation (1), we get
(x4)24+(y0)23=1 (x4)24+y23=1  \Rightarrow \dfrac{{{{\left( {x - 4} \right)}^2}}}{4} + \dfrac{{{{\left( {y - 0} \right)}^2}}}{3} = 1 \\\ \Rightarrow \dfrac{{{{\left( {x - 4} \right)}^2}}}{4} + \dfrac{{{y^2}}}{3} = 1 \\\
This above equation represents the equation of the given ellipse.
Equation of the auxiliary circle to the ellipse (xh)2a2+(yk)2b2=1\dfrac{{{{\left( {x - h} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - k} \right)}^2}}}{{{b^2}}} = 1 where a>b is given by
(xh)2+(yk)2=a2 (3){\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {a^2}{\text{ }} \to {\text{(3)}}
By putting a2=4{a^2} = 4, h = 4 and k = 0 in the equation (3), we get
(x4)2+(y0)2=4 (x4)2+y2=4 x2+428x+y2=4 x2+y28x+12=0  \Rightarrow {\left( {x - 4} \right)^2} + {\left( {y - 0} \right)^2} = 4 \\\ \Rightarrow {\left( {x - 4} \right)^2} + {y^2} = 4 \\\ \Rightarrow {x^2} + {4^2} - 8x + {y^2} = 4 \\\ \Rightarrow {x^2} + {y^2} - 8x + 12 = 0 \\\
The above equation represents the required equation of the auxiliary circle to the given ellipse.
Hence, option A is correct.

Note- In this particular problem, firstly it very important to find out that the given ellipse corresponds to which one of the two general cases of ellipse i.e., (xh)2a2+(yk)2b2=1\dfrac{{{{\left( {x - h} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - k} \right)}^2}}}{{{b^2}}} = 1 where a>b or (xh)2a2+(yk)2b2=1\dfrac{{{{\left( {x - h} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - k} \right)}^2}}}{{{b^2}}} = 1 where b>a, in order to use the formulas for various parameters. Also, the major axis of the given ellipse is X-axis and the minor axis is Y-axis.