Question
Mathematics Question on Continuity and differentiability
If y=Aemx+Benx,show that dx2d2y−(m+n)dxdy+mny=0
Answer
It is given that,y=Aemx+Benx
Then,
dxdy=A.dxd(emx)+B.dxd(enx)
=A.emx.dxd(mx)+B.enx.dxd(nx)=Amemx+Bnenx
dx2d2y=dxd(Amemx+Bnenx)
=Am.dxd(emx)+Bndxd(enx)
=Am.emx.dxd(mx)+Bn.enx.dxd(nx)=Am2emx+Bn2enx
∴dx2d2y−(m+n)dxdy+mny
=Am2emx+Bn2enx−(m+n)(Amemx+Bnenx)+mn(Aemx+Benx)
=Am2emx+Bn2enx−Am2emx−Bmnenx−Amnemx−Bn2enx+Amnemx+Bmnenx
=0
Hence,proved