Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If y=Aemx+Benxy=Ae^{mx}+Be^{nx},show that d2ydx2(m+n)dydx+mny=0\frac{d^2y}{dx^2}-(m+n)\frac{dy}{dx}+mny=0

Answer

It is given that,y=Aemx+Benxy=Ae^{mx}+Be^{nx}
Then,
dydx=A.ddx(emx)+B.ddx(enx)\frac{dy}{dx}=A.\frac{d}{dx}(e^{mx})+B.\frac{d}{dx}(e^{nx})
=A.emx.ddx(mx)+B.enx.ddx(nx)=Amemx+Bnenx=A.e^{mx}.\frac{d}{dx}(mx)+B.e^{nx}.\frac{d}{dx}(nx)=Ame^{mx}+Bne^{nx}
d2ydx2=ddx(Amemx+Bnenx)\frac{d^2y}{dx^2}=\frac{d}{dx}(Ame^{mx}+Bne^{nx})
=Am.ddx(emx)+Bnddx(enx)=Am.\frac{d}{dx}(e^{mx})+Bn\frac{d}{dx}(e^{nx})
=Am.emx.ddx(mx)+Bn.enx.ddx(nx)=Am2emx+Bn2enx=Am.e^{mx}.\frac{d}{dx}(mx)+Bn.e^{nx}.\frac{d}{dx}(nx)=Am^2e^{mx}+Bn^2e^{nx}
d2ydx2(m+n)dydx+mny∴\frac{d^2y}{dx^2}-(m+n)\frac{dy}{dx}+mny
=Am2emx+Bn2enx(m+n)(Amemx+Bnenx)+mn(Aemx+Benx)=Am^2e^{mx}+Bn^2e^{nx}-(m+n)(Ame^{mx}+Bne^{nx})+mn(Ae^{mx}+Be^{nx})
=Am2emx+Bn2enxAm2emxBmnenxAmnemxBn2enx+Amnemx+Bmnenx=Am^2e^{mx}+Bn^2e^{nx}-Am^2e^{mx}-Bmne^{nx}-Amne^{mx}-Bn^2e^{nx}+Amne^{mx}+Bmne^{nx}
=0=0
Hence,proved