Solveeit Logo

Question

Question: If \(y=a{{e}^{mx}}+b{{e}^{-mx}}\) , then \(\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-{{m}^{2}}y=\) 1\. \(1\)...

If y=aemx+bemxy=a{{e}^{mx}}+b{{e}^{-mx}} , then d2ydx2m2y=\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-{{m}^{2}}y=
1. 11
2. 00
3. 1-1
4. None of these.

Explanation

Solution

In this problem we need to calculate the value of the given expression which is d2ydx2m2y\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-{{m}^{2}}y. In the given expression we can observe the term d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} which is nothing but the second order derivative of the function yy with respect to xx . So we will first calculate the first order derivative of the function yy with respect to xx by using the differentiation formulas. Now we will consider the first order derivative and differentiate it with respect to xx. Here also we will use some differentiation formulas to get the value of second order differentiation. After having the value of d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} , substitute the value in the given expression and simplify it to get the required result.

Complete step by step answer:
Given function y=aemx+bemxy=a{{e}^{mx}}+b{{e}^{-mx}} and the expression is d2ydx2m2y\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-{{m}^{2}}y.
Consider the value d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} which is a second order derivative of the function yy with respect to xx.
So differentiating the function y=aemx+bemxy=a{{e}^{mx}}+b{{e}^{-mx}} with respect to xx, then we will have
dydx=ddx(aemx+bemx)\dfrac{dy}{dx}=\dfrac{d}{dx}\left( a{{e}^{mx}}+b{{e}^{-mx}} \right)
Apply the differentiation to each term individually, then we will get
dydx=ddx(aemx)+ddx(bemx)\dfrac{dy}{dx}=\dfrac{d}{dx}\left( a{{e}^{mx}} \right)+\dfrac{d}{dx}\left( b{{e}^{-mx}} \right)
Differentiation for constants is not defined, so write them outside of the differentiation, then we will have
dydx=addx(emx)+bddx(emx)\dfrac{dy}{dx}=a\dfrac{d}{dx}\left( {{e}^{mx}} \right)+b\dfrac{d}{dx}\left( {{e}^{-mx}} \right)
Applying the differentiation formula ddx(eax)=aeax\dfrac{d}{dx}\left( {{e}^{ax}} \right)=a{{e}^{ax}} in the above equation.
dydx=a(memx)+b(memx) dydx=ma(emx)mbemx dydx=m(aemxbemx) \begin{aligned} & \dfrac{dy}{dx}=a\left( m{{e}^{mx}} \right)+b\left( -m{{e}^{-mx}} \right) \\\ & \Rightarrow \dfrac{dy}{dx}=ma\left( {{e}^{mx}} \right)-mb{{e}^{-mx}} \\\ & \Rightarrow \dfrac{dy}{dx}=m\left( a{{e}^{mx}}-b{{e}^{-mx}} \right) \\\ \end{aligned}
Now we have the first order derivative of the given function y=aemx+bemxy=a{{e}^{mx}}+b{{e}^{-mx}} as dydx=m(aemxbemx)\dfrac{dy}{dx}=m\left( a{{e}^{mx}}-b{{e}^{-mx}} \right) .
Again, differentiate the first order derivative with respect to xx to calculate the second order derivative, then we will have
d2ydx2=ddx[m(aemxbemx)] d2ydx2=m[ddx(aemxbemx)] d2ydx2=m[ddx(aemx)ddx(bemx)] d2ydx2=m[addx(emx)bddx(emx)] \begin{aligned} & \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left[ m\left( a{{e}^{mx}}-b{{e}^{-mx}} \right) \right] \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ \dfrac{d}{dx}\left( a{{e}^{mx}}-b{{e}^{-mx}} \right) \right] \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ \dfrac{d}{dx}\left( a{{e}^{mx}} \right)-\dfrac{d}{dx}\left( b{{e}^{-mx}} \right) \right] \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ a\dfrac{d}{dx}\left( {{e}^{mx}} \right)-b\dfrac{d}{dx}\left( {{e}^{-mx}} \right) \right] \\\ \end{aligned}
Applying the differentiation formula ddx(eax)=aeax\dfrac{d}{dx}\left( {{e}^{ax}} \right)=a{{e}^{ax}} in the above equation, then we will get
d2ydx2=m[a(mex)b(memx)] d2ydx2=m[maemx+mbemx] d2ydx2=m2(aemx+bemx) \begin{aligned} & \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ a\left( m{{e}^{x}} \right)-b\left( -m{{e}^{-mx}} \right) \right] \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ ma{{e}^{mx}}+mb{{e}^{-mx}} \right] \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}={{m}^{2}}\left( a{{e}^{mx}}+b{{e}^{-mx}} \right) \\\ \end{aligned}
We have the value y=aemx+bemxy=a{{e}^{mx}}+b{{e}^{-mx}}. Substituting this value in the above equation, then we will have
d2ydx2=m2y\dfrac{{{d}^{2}}y}{d{{x}^{2}}}={{m}^{2}}y
Subtracting the value m2y{{m}^{2}}y from both sides of the above equation, then we will get
d2ydx2m2y=m2ym2y d2ydx2m2y=0 \begin{aligned} & \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-{{m}^{2}}y={{m}^{2}}y-{{m}^{2}}y \\\ & \therefore \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-{{m}^{2}}y=0 \\\ \end{aligned}

So, the correct answer is “Option 2”.

Note: In this problem we have asked to calculate the value of the expression d2ydx2m2y\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-{{m}^{2}}y only. In some cases they may ask to calculate the value of a second order derivative only. Then also we can follow the above mentioned procedure to calculate the second order derivative.