Solveeit Logo

Question

Question: If \(y = a\cos (\log x) + b\sin (\log x)\) where \(a,b\) are parameters then \({x^2}y'' + xy' = \) ...

If y=acos(logx)+bsin(logx)y = a\cos (\log x) + b\sin (\log x) where a,ba,b are parameters then x2y+xy={x^2}y'' + xy' =
A. yy
B. y - y
C. 2y - 2y
D. 2y2y

Explanation

Solution

First, we shall analyze the given information so that we can able to solve the problem. Generally in Mathematics, the derivative refers to the rate of change of a function with respect to a variable. First, we need to solve the given equation to obtainyy. Here, we are applying the product rule and some derivative formulae to find the required answer
Here we need to find the derivative of y=acos(logx)+bsin(logx)y = a\cos (\log x) + b\sin (\log x)to obtain the desired answer.
Formula to be used:
The formulas that are applied in the differentiation of y=acos(logx)+bsin(logx)y = a\cos (\log x) + b\sin (\log x)are as follows.
ddxcosx=sinx\dfrac{d}{{dx}}\cos x = - \sin x
ddxlogx=1x\dfrac{d}{{dx}}\log x = \dfrac{1}{x}
ddxsinx=cosx\dfrac{d}{{dx}}\sin x = \cos x
d(xy)dx=xdydx+y\dfrac{{d\left( {xy} \right)}}{{dx}} = x\dfrac{{dy}}{{dx}} + y

Complete step by step answer:
It is given that y=acos(logx)+bsin(logx)y = a\cos (\log x) + b\sin (\log x) we shall find the derivative of yy first. That is dydx=ddx(acos(logx))+bsin(logx))\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(a\cos (\log x)) + b\sin (\log x))
=ddx(acos(logx))+ddx(bsin(logx))= \dfrac{d}{{dx}}\left( {a\cos (\log x)} \right) + \dfrac{d}{{dx}}\left( {b\sin (\log x)} \right)
=addxcos(logx)+bddxsin(logx)= a\dfrac{d}{{dx}}\cos (\log x) + b\dfrac{d}{{dx}}\sin (\log x) ………………(1)\left( 1 \right)
We know that the derivative of logx\log x is 1x\dfrac{1}{x} , derivative of cosx\cos x is sinx - \sin x , and the derivative of sinx\sin x is cosx\cos x
That is, ddxcosx=sinx\dfrac{d}{{dx}}\cos x = - \sin x ,ddxlogx=1x\dfrac{d}{{dx}}\log x = \dfrac{1}{x} and ddxsinx=cosx\dfrac{d}{{dx}}\sin x = \cos x .
Also, ddxcos(logx)=sin(logx)x\dfrac{d}{{dx}}\cos (\log x) = - \dfrac{{\sin (\log x)}}{x} and ddxsin(logx)=cos(logx)x\dfrac{d}{{dx}}\sin (\log x) = \dfrac{{\cos (\log x)}}{x}
Now, we shall apply the above result in (1)\left( 1 \right)
Hence, we get dydx=asin(logx)x+bsin(logx)x\dfrac{{dy}}{{dx}} = - \dfrac{{a\sin (\log x)}}{x} + \dfrac{{b\sin (\log x)}}{x}
xdydx=asin(logx)+bcos(logx)\Rightarrow x\dfrac{{dy}}{{dx}} = - a\sin (\log x) + b\cos (\log x) …….(2)\left( 2 \right)
Now, we shall differentiate (2)\left( 2 \right) with respect to xx
We know thatd(xy)dx=xdydx+y\dfrac{{d\left( {xy} \right)}}{{dx}} = x\dfrac{{dy}}{{dx}} + y .
Thus, we get
xd2ydx2+dydx=acos(logx)xbsin(logx)xx\dfrac{{{d^2}y}}{{d{x^2}}} + \dfrac{{dy}}{{dx}} = - \dfrac{{a\cos (\log x)}}{x} - \dfrac{{b\sin (\log x)}}{x}
xd2ydx2+dydx=1x(acos(logx)bsin(logx))\Rightarrow x\dfrac{{{d^2}y}}{{d{x^2}}} + \dfrac{{dy}}{{dx}} = \dfrac{1}{x}( - a\cos (\log x) - b\sin (\log x))
x2d2ydx2+xdydx=(acos(logx)bsin(logx))\Rightarrow {x^2}\dfrac{{{d^2}y}}{{d{x^2}}} + x\dfrac{{dy}}{{dx}} = ( - a\cos (\log x) - b\sin (\log x))
Since y=acos(logx)+bsin(logx)y = a\cos (\log x) + b\sin (\log x) we have
x2d2ydx2+xdydx=y\Rightarrow {x^2}\dfrac{{{d^2}y}}{{d{x^2}}} + x\dfrac{{dy}}{{dx}} = - y……(3)\left( 3 \right)
Also,dydx\dfrac{{dy}}{{dx}} can be denoted as yy' and d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} can also be denoted as yy'' .
Hence (3)\left( 3 \right) becomes x2y+xy=y{x^2}y'' + xy' = - y

So, the correct answer is “Option B”.

Note: If we are asked to calculate the derivative of a given equation, we need to first analyze the given problem where we are able to apply the derivative formulae and the derivative refers to the rate of change of a function with respect to a variable. Also, it is to be noted thatdydx\dfrac{{dy}}{{dx}} can be denoted as yy' and d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} can also be denoted as yy'' .