Question
Mathematics Question on Continuity and differentiability
If y=5cosx−3sinx,prove that dx2d2y+y=0
Answer
It is given that,y=5cosx−3sinx
Then,
dxdy=dxd(5cosx)−dxd(3sinx)=5dxd(cosx)−3dxd(sinx)
=5(−sinx)−3cosx=−(5sinx+3cosx)
∴dx2d2y=dxd[−(5sinx+3cosx)]
=−[5.dxd(sinx)+3.dxd(cosx)]
=−[5cosx+3(−sinx)]
=−[5cosx−3sinx]
=−y
∴dx2d2y+y=0
Hence, proved.