Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If y=5cosx3sinxy=5cosx-3sinx,prove that d2ydx2+y=0\frac{d^2y}{dx^2}+y=0

Answer

It is given that,y=5cosx3sinxy=5cosx-3sinx
Then,
dydx=ddx(5cosx)ddx(3sinx)=5ddx(cosx)3ddx(sinx)\frac{dy}{dx}=\frac{d}{dx}(5cosx)-\frac{d}{dx}(3sinx)=5\frac{d}{dx}(cosx)-3\frac{d}{dx}(sinx)
=5(sinx)3cosx=(5sinx+3cosx)=5(-sinx)-3cosx=-(5sinx+3cosx)
d2ydx2=ddx[(5sinx+3cosx)]∴\frac{d^2y}{dx^2}=\frac{d}{dx}[-(5sinx+3cosx)]
=[5.ddx(sinx)+3.ddx(cosx)]=-[5.\frac{d}{dx}(sinx)+3.\frac{d}{dx}(cosx)]
=[5cosx+3(sinx)]=-[5cosx+3(-sinx)]
=[5cosx3sinx]=-[5cosx-3sinx]
=y=-y
d2ydx2+y=0∴\frac{d^2y}{dx^2}+y=0
Hence, proved.