Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If y=500e7x+600e7xy=500e^{7x}+600e^{-7x},show that d2ydx2=49y\frac{d^2y}{dx^2}=49y

Answer

It is given that,y=500e7x+600e7xy=500e^{7x}+600e^{-7x}
Then,
dydx=500.ddx(e7x)+600.ddx(e7x)\frac{dy}{dx}=500.\frac{d}{dx}(e^{7x})+600.\frac{d}{dx}(e^{-7x})
=500.e7x.ddx(7x)+600.e7x.ddx(7x)=500.e^{7x}.\frac{d}{dx}(7x)+600.e^{-7x}.\frac{d}{dx}(-7x)
=3500e7x4200e7x=3500e^{7x}-4200e^{-7x}
d2ydx2=ddx(3500e7x4200e7x)\frac{d^2y}{dx^2}=\frac{d}{dx}(3500e^{7x}-4200e^{-7x})
=3500.ddx(e7x)4200ddx(e7x)=3500.\frac{d}{dx}(e^{7x})-4200\frac{d}{dx}(e^{-7x})
=3500.e7x.ddx(7x)4200.e7x.ddx(7x)=3500.e^{7x}.\frac{d}{dx}(7x)-4200.e^{-7x}.\frac{d}{dx}(-7x)
=7×3500×e7x+7×4200×e7x=7\times 3500\times e^{7x}+7\times 4200\times e^{-7x}
=49×500e7x+49×600e7x=49\times500e^{7x}+49\times600e^{-7x}
=49(500e7x+600e7x)=49(500e^{7x}+600e^{-7x})
=49y=49y
Hence,proved