Question
Mathematics Question on Continuity and differentiability
If y=500e7x+600e−7x,show that dx2d2y=49y
Answer
It is given that,y=500e7x+600e−7x
Then,
dxdy=500.dxd(e7x)+600.dxd(e−7x)
=500.e7x.dxd(7x)+600.e−7x.dxd(−7x)
=3500e7x−4200e−7x
dx2d2y=dxd(3500e7x−4200e−7x)
=3500.dxd(e7x)−4200dxd(e−7x)
=3500.e7x.dxd(7x)−4200.e−7x.dxd(−7x)
=7×3500×e7x+7×4200×e−7x
=49×500e7x+49×600e−7x
=49(500e7x+600e−7x)
=49y
Hence,proved